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UNIT 1  

FRICTION 

Introduction 

 
 

It has been established since long, that the surfaces of the bodies are never perfectly smooth. When, even a 

very smooth surface is viewed under a microscope, it is found to   have roughness and irregularities, which may not    

be detected by an ordinary touch. If a block of one substance is placed over the level surface of the same  or of  

different material, a certain degree of interlocking of the minutely projecting particles takes place. This does not 

involve any force, so long as the block does not move or tends to move. But whenever one block moves or tends to 

move tangentially with respect to the surface, on which it rests, the interlocking property of the projecting particles 

opposes the motion. This opposing force, which acts in the opposite direction of the movement of the upper block, is 

called the force of friction or simply friction. It thus follows, that at every joint in a machine, force of  friction  

arises due to the relative motion between two parts and hence some energy is wasted in overcoming the friction. 

Though the friction is considered undesirable, yet it plays an important role both in nature and in engineering e.g. 

waling on a road, motion of locomotive on rails, transmission of power by belts, gears etc. The friction between the 

wheels and the road is essential for the car to moveforward. 

Types of Friction 

In general, the friction is of the following two types : 

1. Static friction. It is the friction, experienced by a body, when atrest. 

2. Dynamicfriction.Itisthefriction,experiencedby abody,wheninmotion.Thedynamicfrictionisalsocalled 

kinetic friction and is less than the static friction. It is of the following three types : 

(a) Sliding friction. It is the friction, experienced by a body, when it slides over anotherbody. 

(b) Rolling friction. It is the friction, experienced between the surfaces which has balls orrollers 

interposed between them. 

(c) Pivot friction. It is the friction, experienced by a body, due to the motion of rotation as in case of foot 

stepbearings. 

The friction may further be classified as : 

1. Friction between unlubricated surfaces,and 

2. Friction between lubricatedsurfaces. 

 

Friction BetweenUnlubricated Surfaces 

The friction experienced between two dry and unlubricated surfaces in contact is known as dry or solid 

friction. It is due to the surface  roughness. The dry or solid friction includes the sliding friction and rolling  friction  

as discussedabove. 
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Friction Between Lubricated Surfaces 

When lubricant (i.e. oil or grease) is applied between two surfaces in contact, then the friction may be classified into 

the following two types depending upon the thickness of layer of alubricant. 

1. Boundary friction (or greasy friction or non-viscous friction). It is the friction, experienced between the 

rubbing surfaces, when the surfaces have a very thin layer of lubricant. The thickness of this very thin layer is of the 

molecular dimension. In this type of friction, a thin layer of lubricant forms a bond  between  the  two  rubbing 

surfaces. The lubricant is absorbed on the surfaces and forms  a thin film. This  thin  film of the lubricant  results  in 

less friction between them. The boundary friction follows the laws of solidfriction. 

2. Fluid friction (or film friction or viscous friction). It is the friction, experienced between the rubbing 

surfaces, when the surfaces have a thick layer of the lubrhicant. In this case, the actual surfaces do  not  come in  

contact and thus do not rub against each other. It is thus obvious that fluid friction is not due to the surfaces in     

contact but it is due to the viscosity and oiliness of the lubricant. Note :The viscosity is a measure of the resistance 

offered to the sliding one layer of the lubricant over an adjacent layer. The absolute viscosity of a lubricant may be defined as the 

force required to cause a plate of  unit area to slide with unit velocity relative to a parallel plate, when the two plates a re separated   

by a layer of lubricant of unitthickness. 

The oiliness property of a lubricant may be clearly understood by considering two lubricants of equal viscosities 

and atequaltemperatures.Whentheselubricantsaresmearedontwodifferentsurfaces,itisfoundthattheforceoffrictionwithone 

lubricantisdifferentthanthatoftheother.Thisdifferenceisduetothepropertyofthelubricantknownasoiliness.Thelubricant which 

gives lower force of friction is said to have greateroiliness.  

 

 

Limiting Friction 

Consider that a body A of weight W is lying on a rough horizontal body  Bas shown in Fig. In this position, the body  

Ais in equilibrium under the action of its own weight W , and the normal reaction R N (equal to W ) of  B on  A . Now if  

a small horizontal force  P1  is applied to the body A acting through  its  centre of gravity as shown in Fig., it does  not 

move because of the frictional force which prevents the motion. This shows that the applied force P1 is exactly balanced 

by the force of friction F1 acting in the opposite direction If we now increase the applied force to  P2as  shown in Fig. 

10.1 (c), it is still found to be in equilibrium. This means that the force of friction has also increased to    a value F2 = 

P2. Thus every time the effort is increased the force of friction also increases, so as to become exactly  equal to the 

applied force. There is, however, a limit beyond which the force of friction cannot increase as shown in Fig. 10.1 (d). 

After this, any increase in the applied effort will not lead to any further increase in the force of friction,  as shown in 

Fig. 10.1 (e), thus the body  A begins to move in the direction of the applied force. This maximum value  of frictional 

force, which comes into play, when a body just begins to slide over the surface of the other body, is  known as 

limiting force of friction or simply limiting  friction. It may be noted that when the applied force is  less than the 

limiting friction, the body remains at rest, and the friction into play is called static friction which may have any value 

between zero and limitingfriction. 
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Laws of Static Friction 

Following are the laws of static friction : 

1. The force of friction always acts in a direction, opposite to that in which the body tends tomove. 

2. The magnitude of the force of friction is exactly equal to the force, which tends the body tomove. 

3. The magnitude of the limiting friction (F ) bears a constant ratio to the normal reaction (RN) between the two 

surfaces.Mathematically 

F/R N = constant 

4. The force of friction is independent of the area of contact, between the twosurfaces. 

5. The force of friction depends upon the roughness of thesurfaces. 

 
 

Laws of Kinetic or Dynamic Friction 

Following are the laws of kinetic or dynamic friction : 

1. The force of friction always acts in a direction, opposite to that in which the body ismoving. 

2. The magnitude of the kinetic friction bears a constant ratio to the normal reaction between the two surfaces. But   

this ratio is slightly less than that in case of limitingfriction. 

3. For moderate speeds, the force of friction remains constant. But it decreases slightlywith the increase of speed. 

Laws of Solid Friction 

Following are the laws of solid friction : 

1. The force of friction is directly proportional to the normal load between thesurfaces. 

2. The force of friction is independent of the area of the contact surface for a given normalload. 

3. The force of friction depends upon the material of which the contact surfaces aremade. 

4. The force of friction is independent of the velocity of sliding of one body relative to the otherbody. 

Laws of Fluid Friction 

Following are the laws of fluid friction : 
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1. The force of friction is almost independent of theload. 

2. The force of friction reduces with the increase of the temperature of thelubricant. 

3. The force of friction is independent of the substances of the bearingsurfaces. 

4. The force of friction is different for differentlubricants. 

Coefficient of Friction 

It is defined as the ratio of the limiting friction (F) to the normal reaction (R N) between  the two  bodies.  It  is  

generally denoted by . Mathematically, coefficient offriction, 

 = F/RN 

Limiting Angle of Friction 

Consider that a body A of weight (W ) is resting on a horizontal plane B, as shown in Fig. 10.2.  If  a 

horizontal force P is applied to the body, no relative motion will take place until the applied force P is equal to the 

force of friction F, acting opposite to the direction of motion. The magnitude of this force of friction is F= .W 

= .R N, where RN is the normal reaction. In the limiting case, when the motion just begins, the body will be in 

equilibrium under the action of the following three forces: 

1. Weight of the body (W), 

2. Applied horizontal force (P),and 

3. Reaction (R) between the body A and the planeB. 

The reaction R must, therefore, be equal and opposite to the resultant of W and P and will be inclined at an 

angle  to the normal reaction RN. This angle  is known as the  limiting  angle  of  friction. It may be defined as  

the angle which the resultant reaction R makes with the normal reactionRN. 

From Fig. 10.2, tan  = F/RN = R N / R N = 

Angle of Repose 

Consider that a body A of weight (W ) is resting on an inclined plane B, as shown in Fig. 10.3. If the angle of 

inclination  of the plane to the horizontal is such that the body begins to move down the plane, then the angle  is 

called the angle of repose. A little consideration will show that the body will begin to move down the plane when  

theangleofinclinationofthe planeisequaltotheangleoffriction(i.e.=).Thismaybeprovedasfollows: 
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The weight of the body (W ) can be resolved into the following two components : 

1. W sin , parallel to the plane B. This component tends to slide the body down theplane. 

2. W cos, perpendicular to the plane B. This component is balanced by the normal reaction (R N) of the  

bodyA and the planeB. 

The body will only begin to move down the plane, when 

W sin  = F = .R N = .W cos

tan =  = tan  or  = 

Friction of a Body Lying on a Rough Inclined Plane 

Consider that a body of weight (W ) is lying on a plane inclined at an angle  with the horizontal, as shown in Fig. 

(a) and(b). 

 
 

little consideration will show that if the inclination of the plane, with the horizontal, is less than the angle of 

friction, the body will be in equilibrium as shown in Fig. 10.6 (a). If,in this condi- tion, the body is required to be 

moved upwards and downwards, a corresponding force is required for the same. But, if the inclination of the plane is 

more than the angle of friction, the body will move down and an upward force (P) will be required to resist the body 

from moving down the plane as shown in Fig. (b). 
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Let us now analyse the various forces which act on a body when it slides either up or down an inclined 

plane. 

1. Considering the motion of the body up theplane 

Let W = Weight of thebody, 

=Angleofinclinationoftheplanetothehorizontal, 

=Limitingangleoffrictionforthecontactsurfaces, 

P = Effort applied in a given direction in order to cause the body to slide with 

uniform velocity parallel to the plane, considering friction, 

P0 = Effort required to move the body up the plane neglecting friction, 

 = Angle which the line of action of P makes with the weight of the body W , 

 = Coefficient of friction between the surfaces of the plane and the body, 

RN = Normal reaction, and 

R = Resultant reaction 

When the friction is neglected, the body is in equilibrium under the action of the three forces, i.e. P0, W and R N, as 

shown in Fig. 10.7 (a). The triangle of forces is shown in Fig. 10.7 (b). Now applying sine rule for these three 

concurrent forces, 

 
 

When friction is taken into account, a frictional force F = .R N  acts in the  direction opposite to the motion  

of the body, as shown in Fig. 10.8 (a). The resultant  reactionR between the plane and the body is inclined  at an  

anglewiththenormalreactionRN.ThetriangleofforcesisshowninFig.(b).Nowapplyingsinerule, 
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2. Considering the motion of the body down theplane 

Neglecting friction, the effort required for the motion down the plane will be same as for the motion up the 

plane, i.e. 

 
 

When the friction is taken into account, the force of friction  F= .RN  will act up the plane and the resultant reaction   R 

will make an angle  with R N towards its right as shown in Fig.  (a).  The triangle of forces is shown in  Fig. (b). Now 

from sine rule, 
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Efficiency of Inclined Plane 

The ratio of the effort required neglecting friction (i.e. P0) to the effort required considering friction (i.e. P) is known  

as efficiency of the inclined plane. Mathematically, efficiency of the inclinedplane, 

P0  /P 

Let us consider the following two cases : 

1. For the motion of the body up theplane 

2. For the motion of the body down theplane 

Since the value of P will be less than P0, for  the motion of the body down  the  plane, therefore in this  

case, 

 

 

Screw Friction 

The screws, bolts, studs, nuts etc. are widely used in various machines and structures for temporary  

fastenings. These fastenings have screw threads, which are made by cutting a continuous helical groove on a  

cylindrical surface. If the threads are cut on the outer surface of a solid rod, these are known as external threads.  

But if the threads are cut on the internal surface of a hollow rod, these are known as internal threads. The screw 

threads are mainly of two types i.e. V-threads and square threads. The V-threads are stronger  and  offer  more 

frictional resistance to motion than square threads. Moreover, the V-threads have an advantage of preventing the nut 

fromslackening.Ingeneral,theV-threadsareusedforthepurposeoftighteningpiecestogether  e.g.boltsandnuts 
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etc. But the square threads are used in screw jacks, vice screws  etc. The following terms  are important for the study  

of screw: 

1. Helix. It is the curve traced by a particle, while describing a circular path  at a uniformspeed and advancing  

in the axial direction at  a uniform rate. In other  words, it  is the curve traced bya particle  while moving  

along a screwthread. 

2.  Pitch. It is the distance from a point of a screw to a corresponding point on the next thread, measured  

parallel to the axis of thescrew. 

3. Lead. It is the distance, a screw thread advances axially in oneturn. 

4. Depth of thread. It is the distance between the top and bottom surfaces of a thread (also known ascrest 

androot of a thread). 

5. Single-threadedscrew.Iftheleadofascrewisequaltoitspitch,itisknownassinglethreadedscrew. 

6. Multi-threaded screw. If more than one thread is cut in one lead distance of a screw, it is known as multi-

threaded screw e.g. in a double threaded screw, two threads are cut in one lead length. In such cases,  all the 

threads run independently along the length of the rod.Mathematically, 

Lead = Pitch × Number of threads 

7. Helix angle. It is the slope or inclination of the thread with the horizontal.Mathematically, 

 

Screw Jack 

The screw jack is a device, for lifting heavy loads, by applying a comparatively smaller effort at its handle. 

The principle, on which a screw jack works is similar to that of an inclined plane. 



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 10 
 

 
 

Fig. (a) shows a common form of a screw jack, which consists of a square threaded rod (also called screw   

rod or simply screw) which fits into the inner threads of the nut. The load, to be raised or lowered, is placed on the  

head of the square threaded rod which is rotated by the application of an effort at the end of the lever for lifting or 

lowering theload. 

 
Torque Required to Lift the Load by a Screw Jack 

If one complete turn of a screw thread by imagined to be unwound, from the body of the screw  and 

developed, it will form an inclined plane as shown in Fig.(a). 

 

Let p = Pitch of the screw, 

d = Mean diameter of the screw, 

 = Helix angle, 

P = Effort applied at the circumference of the screw to lift the load, 

W = Load to be lifted, and 

 = Coefficient of friction, between the screw and nut = tan ,where is the friction angle. 

From the geometry of the Fig. 10.12 (a), we find that 

tan = p/d 

Since the principle on which a screw jack works is similar to that of an inclined plane, there- fore the force 

applied on the lever of a screw jack may be considered to be horizontal as shown in Fig. (b). 

Since the load is being lifted, therefore the force of friction (F = .RN) will act downwards. All the forces 

acting on the screw are shown in Fig.(b). 

Resolving the forces along the plane, 

P cos = W sin  + F = W sin  + .R N 

and resolving the forces perpendicular to the plane, 

RN  =P sin  + W cos

Substituting this value of R N in equation (i), 

P cos = W sin  +  (P sin  + Wcos) 

= W sin  + P sin  + Wcos
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Torque Required to Lower the Load by a Screw Jack 

We have discussed in Art. 10.18, that the principle on which the screw jack works is similar to that of an inclined 

plane. If one complete turn of a screw thread be imagined to be unwound from the body of the screw and developed,    

it will form an inclined plane as shown in Fig.(a). 

 
Let p = Pitch of the screw, 

d = Mean diameter of the screw, 

 = Helix angle, 

P = Effort applied at the circumference of the screw to lower the load, 

W = Weight to be lowered, and 

 = Coefficient of friction between the screw and nut = tan , where  is the friction angle. 
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From the geometry of the figure, we find that 

tan = p/d 

Since the load is being lowered, therefore the force of friction (F = .RN) will act upwards.  All  the forces  acting on 

the screw are shown in Fig.(b). 

Resolving the forces along the plane, 

P cos = F – W sin  = .R N – W sin 

and resolving the forces perpendicular to the plane, 

RN  =W cos – P sin 

Substituting this value of R N in equation (i), 

P cos =  (W cos – P sin ) – W sin 

= .W cos – .P sin  – W sin 



Substituting the value of  = tan  in the above equation, we get 

Multiplying the numerator and denominator by cos, 

 

Torque required to overcome friction between the screw and nut, 
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Over Hauling and Self Locking Screws 

We have seen in Art. 10.20 that the effort required at the circumference of the screw to lower the load is 

P = W tan ( – ) 

and the torque required to lower the load 

 

In the above expression, if <, then torque required to lower the load will be negative. In  other  words,  the 

load will start moving downward without the application of any torque. Such a condition is known as over 

hauldingof  screws. If however, >, the torque required to lower the load will  positive, indicating that an effort  is 

applied to lower the load. Such a screw is known as self locking screw. In other words, a screw will be self  locking 

if the friction angle is greater than helix angle or coefficient of friction is greater than tangent of helixangle 

i.e.  or tan > tan . 

 
 

Friction in Journal Bearing-Friction Circle 

A journal bearing forms a turning pair as shown in Fig. 10.15 (a). The fixed outer element of a turning pair is called     

a  bearingand that portion of the inner element (i.e. shaft) which fits in the bearing is called a  journal. The journal  

isslightlylessindiameterthanthebearing,inordertopermitthefreemovementofthejournalinabearing. 

 

 
When the bearing is not lubricated (or the journal is stationary), then there is a line contact between the two 

elements as shown in Fig. 10.15 (a). The load W on the journal and normal reaction R N (equal to W ) of the bearing 

acts through the centre. The reaction RN acts vertically upwards at point A . This point  Ais known as  seat or  point 

ofpressure. 

Now consider a shaft rotating inside a bearing in clockwise direction as shown in Fig. 10.15 (b). The  

lubricant between the journal and bearing forms a thin layer which gives rise to a greasy friction.Therefore, the  

reaction R does not act vertically upward, but acts at another point of pressure B. This is due to the fact thatwhen 
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shaft rotates, a frictional force F = R N  acts  at the circumference of the shaft which has a  tendency to rotate the  

shaft in opposite direction of motion and this shifts the point A to pointB. 

In order that the rotation may be maintained, there must be a couple rotating the shaft 

.Let  = Angle between R (resultant of F and R N) and RN, 

 = Coefficient of friction between the journal and bearing, 

T = Frictional torque in N-m,and 

r = Radius of the shaft inmetres. 

For uniform motion, the resultant force acting on the shaft must  be  zero  and the  resultant turning moment 

on the shaft must be zero. In otherwords, 

R = W , and T = W × OC = W × OB sin  = W.rsin 

Since  is very small, therefore substituting sin  = tan 

T = W.rtan  = .W.r 

If the shaft rotates with angular velocity  rad/s, then power wasted in friction, 

P = T. = T × 2N/60 watts 

 

 
Flat Pivot Bearing 

When a vertical shaft rotates in a flat pivot bearing (known as foot step bearing), as shown in Fig. 

10.17 , the sliding friction will be along the surface of contact between the shaft and thebearing. 

Let W = Load transmitted over the bearingsurface, 

R = Radius of bearing surface, 

p = Intensity of pressure per unit area of bearing surface between rubbing surfaces, and 

 = Coefficient of friction. 

We will consider the following two cases : 

1. When there is a uniform pressure ;and 

2. When there is a uniformwear. 
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1. Considering unifrompressure 

When the pressure is uniformly distributed over the bearing area, then 

Consider a ring of radius r and thickness drof the bearing area. 

Area of bearing surface, A = 2r.dr 

Load transmitted to the ring, 

W = p × A = p × 2 r.dr 

Frictional resistance to sliding on the ring acting tangentially at radius r, 

Fr= .W = p × 2r.dr= 2.p.r.dr 

Frictional torque on the ring, 

Tr= Fr× r p r.dr× r = 2 p r2  dr 

Integrating this equation within the limits from 0 to R for the total frictional torque on the pivot bearing. 

 

2. Considering uniformwear 

We have already discussed that the rate of wear depends upon the intensity of  pressure  (p) and the velocity 

of rubbing surfaces (v). It is assumed that the rate of wear is proportional to the product of intensity of pressure and   

the velocity of rubbing surfaces (i.e. p.v..). Since the velocity of rubbing surfaces increases with the distance 

(i.e.radiusr) from the axis of the bearing, therefore for uniformwear 

p.r= C (a constant) 

and the load transmitted to the ring,  

W = p × 2r.dr 

 

 



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 16 
 

0 

 

 

Conical Pivot Bearing 

The conical pivot bearing supporting a shaft carrying a load W is shown in Fig 

P- = Intensity of pressure normal to thecone, 

= Semi angle of the cone, 

= Coefficient of friction between the shaft and the bearing, and 

R= Radius of the shaft. 

Consider a small ring of radius r and thickness dr. Let dl is the length of ring along the cone, such that 

dl= drcosec 

Area of the ring, 

A = 2r.dl = 2r.dr cosec 

...(∵ dl = drcosec ) 

 

 

 

1. Considering uniformpressure 

We know that normal load acting on the ring, 

W n= Normal pressure × Area 

= pn× 2r.dr cosec 

and vertical load acting on the ring, 

*W = Vertical component of W n= W n.sin

=pn×2r.drcosec.sin=pn×2r.drpn

W /R2 

We know that frictional force on the ring acting tangentially at radius r, 
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Fr.Wn.pn.2r.dr cosec  2. pn.cosec .r.dr 

and frictional torque acting on the ring, 

TrFrr  2 . pn.cosec .r.drr  2. pncosec .r 2 .dr 

Integrating the expression within the limits from 0 to R for the total frictional torque on the conical pivot bearing 

 
2. Considering uniformwear 

In Fig., let prbe the normal intensity of pressure at a distance r from the central axis. We know that, in  case of  

uniform wear, the intensity of pressure varies inversely with thedistance 

pr.r= C (a constant) or pr= C/r 

and the load transmitted to the ring, 
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1. Clutches 

Friction Clutches 

A friction clutch has its principal  application in the transmission of power of shafts  and machines which  

must be started and stopped frequently. Its application is also found in cases in which power is to be delivered to 

machines partially or fully loaded. The force of friction is used to start the driven  shaft  from  rest  and  gradually 

brings it up to the proper speed without excessive slipping of the friction surfaces. In automobiles, friction clutch is 

used to connect the engine to the driven shaft. In operating such a clutch, care should be taken so that the friction 

surfaces engage easily and gradually brings the driven shaft up to proper speed. The proper alignment of the bearing 

must be maintained and it should be located as close to the clutch as possible. It maybe noted that 

1. The contact surfaces should develop a frictional force that may pick up and hold the load with reasonably low 

pressure between the contactsurfaces. 

2. The heat of friction should be rapidly dissipated and tendency to grab should be at aminimum. 

3. The surfaces should be backed by a material stiff enough to ensure a reasonably uniform distribution of pressure. 

The friction clutches of the following types are important from the subject point of view: 

1. Disc or plate clutches (single disc or multiple discclutch), 

2. Cone clutches,and 

3. Centrifugalclutches. 

We shall now discuss, these clutches, in detail, in the following pages. It may be noted that  the  disc and  

cone clutches are based on the same theory as the pivot and collarbearings. 

Single Disc or Plate Clutch 

A single disc or plate clutch, as shown in Fig. 10.21, consists of a clutch plate whose both sides are faced  

with a friction material (usually of Ferrodo). It is mounted on the hub which is free to move axially along the splines   

of the driven shaft. The pressure plate is mounted inside the clutch body which is bolted to the flywheel. Both the 

pressure plate and the flywheel rotate with the engine crankshaft or the driving shaft. The pressure plate pushes the 

clutch plate towards the flywheel by a set of strong springs which are arranged radially inside the body. The three 

levers (also known as release levers or fingers) are carried on pivots suspended from the case of the body. These are 

arranged in such a manner so that the pressure plate moves away from the flywheel by the inward movement of a  

thrustbearing.Thebearingismounteduponaforkedshaftandmovesforwardwhentheclutchpedalispressed. 

When the clutch pedal is pressed down, its linkage forces the thrust release bearing to move in towards the 

flywheel and pressing the longer ends of the  levers inward. The levers are  forced to  turn on their  suspended  pivot 

and the pressure plate moves away from the flywheel by the  knife edges, thereby compressing the clutch  springs.  

This action removes the pressure from the clutch plate and thus moves back from the flywheel and the driven shaft 

becomes stationary. On the other hand, when the foot is taken off from the  clutch  pedal, the thrust bearing moves  

back by the levers. This allows the springs to extend and thus the pressure plate pushes the clutch plate back towards 

the flywheel. 
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The axial pressure exerted by the spring provides a frictional force in the circumferential direction when the 

relative motion between the driving and driven members tends to take place. If the torque due to this frictional force 

exceeds the torque to be transmitted, then no slipping takes place and the power is transmitted from the driving shaft   

to the drivenshaft. 

Now consider two friction surfaces, maintained in contact by an axial thrust W , as shown in Fig. (a). 

T = Torque transmitted by the clutch 

p = Intensity of axial pressure with which the contact surfaces are held together, 

r1and r2 = External and internal radii of friction faces, and 

 = Coefficient of friction. 

Consider an elementary ring of radius r and thickness dras shown in Fig. (b). 

We know that area of contact surface or friction surface, 

= 2 r.dr 

Normal or axial force on the ring, 

W = Pressure × Area = p × 2 r.dr 

and the frictional force on the ring acting tangentially at radius r, 
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Fr= .W = .p × 2 r.dr 

Frictional torque acting on the ring, 

Tr= Fr× r = .p × 2 r.dr× r = 2  ×  .p.r2 dr 

 
We shall now consider the following two 

cases : 

1. When there is a uniform pressure,and 

2. When there is auniform 

wear. 

1. Considering  uniform  pressure 

When the pressure is uniformly distributed 

over the entire area of the friction face, then 

the intensity ofpressure, 

 

We have discussed above that the frictional torque on the elementary ring of radius r and thickness dris 

Integrating this equation within the limits from r2 to r1 for the total frictional torque. 

2. Considering uniformwear 

In Fig. 10.22, let p be the normal intensity of pressure at a distance r from the axis of the clutch. Since the intensity  

of pressure varies inversely with the distance,therefore 
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Multiple Disc Clutch 

A multiple disc clutch, as shown in Fig. 10.23, may be used when a large torque is to be transmitted. The 

inside discs (usually of steel) are fastened to the driven shaft to permit axial motion (except for the last disc). The 

outside discs (usually of bronze) are held by bolts and are fastened to the housing which is keyed to the driving 

shaft. The multiple disc clutches are extensively used in motor cars, machine toolsetc. 

Let 

n1 = Number of discs on the driving shaft, and 

n2 = Number of discs on the driven shaft. 
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Cone Clutch 

A cone clutch, as shown in Fig. 10.24, was extensively used in automobiles but now-a-days it has been replaced 

completely by the disc clutch 
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It consists of one pair of friction surface only. In a cone clutch, the driver is keyed to the driving shaft by a sunk key 

and has an inside conical surface or face which exactly fits into the outside conical surface of the driven. The driven 

member resting on the feather key in the driven shaft, may be shifted along the shaft by a forked lever provided at  B,  

in order to engage the clutch by bringing the two conical surfaces in contact. Due to the frictional resistance set up at 

this contact surface, the torque is transmitted from one shaft to another. In some cases, a spring is placed around the 

driven shaft in contact with the hub of the driven. This spring holds the clutch faces in contact and maintains the 

pressure between them, and the forked lever is used only for  disengagement  of the clutch.  The contact  surfaces  of 

the clutch may be metal to metal contact, but more often the driven member is lined with some material like wood, 

leather, cork or asbestos etc. The material of the clutch faces (i.e. contact surfaces)  depends  upon the  allowable 

normal pressure and the coefficient of friction. Consider a pair of friction surface as shown in Fig. 10.25 (a). Since    

the area of contact of a pair of friction surface is a frustrum of a cone, therefore the torque transmitted by the cone 

clutch may be determined in the similar manner as discussed for conical pivot bearings inArt. 

 

 

 

 

pn= Intensity of pressure with which the conical friction surfaces are held together (i.e. normal  pressure 

between contactsurfaces), 

r1and r2 = Outer and inner radius of friction surfaces respectively. 

R = Mean radius of the friction surface 

 = Semi angle of the cone (also called face angle of the cone) or the angle of the friction surface with the axis   

of the clutch, 

 = Coefficient of friction between contact surfaces, and 

b = Width of the contact surfaces (also known as face width or clutch face). 

 
Consider a small ring of radius r and thickness dr, as shown in Fig. 10.25 (b). Let dl is length of ring of the friction 
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surface, such that  

 
 

Area of the ring, 

 
dl= dr.cosec


A = 2r.dl= 2r.dr cosec 

We shall consider the following two cases : 

1. When there is a uniform pressure,and 

2. When there is a uniformwear. 

1. Considering uniformpressure 

We know that normal load acting on the ring, 

Wn= Normal pressure × Area of ring = pn× 2 r.dr.cosec

and the axial load acting on the ring, 

W = Horizontal component of W n(i.e. in the direction of W ) 

= W n× sin  = pn× 2r.dr. cosec × sin  = 2 × pn.r.dr 

Total axial load transmitted to the clutch or the axial spring force required, 
 

 
 

 
We know that frictional force on the ring acting tangentially at radiusr, 

Fr= .W n= .pn× 2 r.dr.cosec

Frictional torque acting on the ring, 

Tr= Fr× r = .pn× 2 r.dr. cosec.r = 2 .pn.cosec.r2 dr 

Integrating this expression within the limits from r2 to r1 for the total frictional torque on the clutch. 

Total frictional torque, 
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Substituting the value of pnfrom equation (i), we get 
 

2. Considering uniformwear 

In Fig. 10.25, let prbe the normal intensity of pressure at a distance r from the axis of the clutch. We know 

that, in case of uniform wear, the intensity of pressure varies inversely with the distance. 
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Centrifugal Clutch 

The centrifugal clutches are usually incorporated into the motor pulleys. It consists of a  number of  shoes  on the  

inside of a rim of the pulley, as shown in Fig. 10.28. The outer surface of the shoes are covered with a  friction 

material. These shoes, which can move radially in guides, areheld 

 

against the boss (or spider) on the driving shaft by means of springs. The springs exert  a radially inward  force which  

is assumed constant. The mass of the shoe, when revolving, causes it to exert a radially  outward  force  (i.e.  

centrifugal force). The magnitude of this centrifugal force depends upon the speed at which the shoe is revolving. A 

little consideration will show that when the centrifugal force is less than the  spring force, the shoe  remains in the  

same position as when the driving shaft was stationary, but when the  centrifugal force is equal to the spring force,    

the shoe is just floating. When the centrifugal  force exceeds the  spring force, the shoe moves  outward  and comes  

into contact with the driven member and presses against it. The force with which the shoe presses against the driven 

memberisthedifferenceofthecentrifugalforceandthespringforce.Theincreaseofspeedcausestheshoetopress 
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harder  

and enables more torque to be transmitted. 

In order to determine the mass and size of the shoes, the following procedure is adopted : 

1. Mass of theshoes 

Consider one shoe of a centrifugal clutch as shown in Fig 

 
 

 

 
 

 

 

 

 
place, 

We know that the centrifugal force acting on each shoe at the running speed, 

*Pc= m.2.r 

and the inward force on each shoe exerted by the spring at the speed at which engagement begins to take 

 

 

Ps= m (1)2 r 

The net outward radial force (i.e. centrifugal force) with which the shoe presses against the rim at the 

running speed  

= Pc– Ps 

and the frictional force acting tangentially on each shoe, 

F =  (Pc– Ps) 

Frictional torque acting on each shoe,  

= F × R =  (Pc– Ps) R 
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and total frictional torque transmitted, 
 
 

T =  (Pc– Ps) R × n = n.F.R 

 

2. Size of theshoes 

From this expression, the mass of the shoes (m) may be evaluated. 

 

l = Contact length of the shoes, 

b = Width of the shoes, 

R = Contact radius of the shoes. It is same as the inside radius of the rim of the pulley. 

 = Angle subtended by the shoes at the centre of the spider in radians. 

p = Intensity of pressure exerted on the shoe. In order to ensure reasonable life, the intensity of 

pressure may be taken as 0.1N/mm2 

Area of contact of theshoe, 

A = l.b 

and the force with which the shoe presses against the rim 

= A × p = l.b.p 

Since the force with which the shoe presses against the rim at the running speed is (Pc– Ps), 

therefore 

l.b.p= Pc– Ps 

From this expression, the width of shoe (b) may be obtained. 
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  Brakes and Dynamometers 

Introduction 

A brake is a device by means of which artificial frictional resistance is applied to a  moving  machine 

member, in order to retard or stop the motion of a machine. In the process of performing this function, the brake 

absorbs either kinetic energy of the moving member or potential energy given up by objects being lowered by hoists, 

elevators etc. The energy absorbed by brakes is dissipated in the form of heat. This heat is dissipated in the  

surrounding air (or water which is circulated through the passages in the brake drum) so that excessive heating of the 

brake lining does not take place. The capacity of a brake depends upon the following factors: 

1. The unit pressure between the brakingsurfaces, 

2. The coefficient of friction between the brakingsurfaces, 

3. The peripheral velocity of the brakedrum, 

4. The projected area of the friction surfaces,and 

5. The ability of the brake to dissipate heat equivalent to the energy beingabsorbed. 

The major functional difference between a clutch and a brake is that a clutch is used to keep the driving and 

driven member moving together, whereas brakes are used to stop a moving member or to control its speed. 

 
 

Materials for Brake Lining 

The material used for the brake lining should have the following characteristics 

1. It should have high coefficient of friction with minimum fading. In other words, the coeffi- cientof  friction 

should remain constant with change intemperature. 

2. It should have low wearrate. 

3. It should have high heatresistance. 

4. It should have high heat dissipation capacity. 

5. It  should  have adequate mechanicalstrength. 

6. It should not be affected by moisture and oil. 

The materials commonly used for facing or lining of brakes and their properties are shown in the following 

table. 

Types of Brakes 

The brakes, according to the means used for transforming the energy by the braking elements, are classified 
as :  

1. Hydraulic brakes e.g. pumps or hydrodynamic brake and fluidagitator, 

2. Electric brakes e.g. generators and eddy current brakes,and 

3. Mechanicalbrakes. 

The hydraulic and electric brakes cannot bring the member to rest and are mostly used where large amounts 
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of energy are to be transformed while the brake is retarding the load such as in laboratory dynamometers, high way 

trucks and electric locomotives. These brakes are also used for retarding or controlling the speed of a vehicle for down-

hill travel. The mechanical brakes, according to the direction of acting force, may be  divided  into  the  following two 

groups: 

(a) Radial brakes. In these brakes, the force acting on the brake drum is in radial direction. The radial brakes 

may be sub-divided into external brakes and internal brakes. According to the shape of the friction 

elements, these brakes may be block or shoe brakes and bandbrakes. 

(b) Axial brakes. In these brakes, the force  acting on the brake drum  is in axial direction. The axial brakes  

may be disc brakes and cone brakes. The analysis of these brakes is similar to clutches. Since we are 

concernedwithonly mechanicalbrakes,therefore,thesearediscussed,indetail,inthefollowingpages. 

Single Block or Shoe Brake 

A single block or shoe brake is shown in Fig. 19.1. It consists of  a block or  shoe which is  pressed against  

the rim of a revolving brake wheel drum. The block is made of a softer material than the rim of the wheel. This type   

of a brake is commonly used on railway trains and tram cars. The friction between the block and the wheel causes a 

tangential braking force to act on the wheel, which retard the rotation of the wheel. The block is pressed against the 

wheel by a force applied to one end of a lever to which the block is rigidly fixed as shown in Fig. 19.1. The other      

end of the lever is pivoted on a fixed fulcrumO. 

 

If the angle of contact is less than 60°, then it may be assumed that the normal pressure between the block  

and the wheel is uniform. In such cases, tangential braking force on thewheel, 

Let us now consider the following three cases : 

Case 1.When the line of action of tangential braking force (Ft ) passes through the fulcrum O of the lever, and the 

brake wheel rotates clockwise as shown in Fig. (a), then for equilibrium, taking moments about the fulcrum O, we  

have 
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It may be noted that when the brake  wheel rotates anticlockwise as shown in Fig.  (b), then the braking  

torque is same,i.e 

Case 2.When the line of action of the tangential braking force (Ft ) passes through a distance ‘a’ below the fulcrum  O, 

and the brake wheel rotates clockwise as shown in Fig. (a), then for equilibrium, taking moments about  the  fulcrumO, 

 

When the brake wheel rotates anticlockwise, as shown in Fig. 19.2 (b), then for equilibrium. 

Case 3.When the line of action of the tangential braking force (Ft ) passes through a distance ‘a’ above the fulcrum  O, 

and the brake wheel rotates clockwise as shown in Fig. 19.3 (a), then for equilibrium, taking moments about the 

fulcrum O, wehave 
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and braking torque, 

 
 

 

When the brake wheel rotates anticlockwise as shown in Fig. 19.3 (b), then  for  equilibrium,  taking  

moments about the fulcrum O, wehave 

 

Pivoted Block or Shoe Brake 

We have discussed in the previous article that when the angle of contact is less than 60°, then it may be 

assumed that the normal pressure between the  block and the wheel is uniform. But when the angle of  contact is  

greater than 60°, then the unit pressure normal to the surface of contact is less at the ends than at the centre. In such 

cases, the block or shoe is pivoted to the lever, as shown in Fig. 19.4, instead of  being rigidly attached to the lever. 

This gives uniform wear of the brake lining in the direction of the applied force. The braking torque for a pivoted  

block or shoe brake (i.e. when 2 > 60°)is 

given by 
 



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 33 
 

 
 

Simple Band Brake 

A band brake consists of a flexible band of leather, one or more ropes,or a steel lined with friction material, 

which embraces a part of the circumference of the drum. A band brake, as shown in Fig., is called a simple band 

brake in which one end  of the band is attached to a fixed pin or fulcrum of the lever while the other end is attached   

to the lever at a distance b from the fulcrum. When a force P is applied to the lever at C, the lever turns about the 

fulcrum pin O and tightens the band on the drum and hence  the brakes  are  applied. The friction  between the band 

andthedrumprovidesthebrakingforce.TheforcePontheleveratCmaybedeterminedasdiscussedbelow: 

 = Angle of lap (or embrace) of the band on the drum, 

µ = Coefficient of friction between the band and the drum, 

r = Radius of the drum, 

t = Thickness of the band, and 

re= Effective radius of the drum 

We know that limiting ratio of the tensions is given by the relation, 
 

and braking force on the drum = T 1 – T2 

Braking torque on the drum, 

TB = (T 1 – T2) r . . . (Neglecting thickness ofband) 

= (T 1 – T2)re . . . (Considering thickness ofband) 

Now considering the equilibrium of the lever OBC. It may be noted that when the drum rotates in the 

clockwise direction, as shown in Fig.(a), the end of the band attached to the fulcrum O will be slack with tension T2  

and end of the band attached to B will be tight with tension T1. On the other hand, when the drumrotates in the 
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anticlockwise direction, as shown in Fig.(b), the tensions in the band will reverse, i.e. the end of the band attached to 

the fulcrum O will be tight with tension T1 and the end of the band attached to B will be slack with tension T 2. Now 

taking moments about the fulcrum O, wehave 

P.l=T1.b . . . (For clockwise rotation of thedrum) 

P.l=T2.b . . . (For anticlockwise rotation of thedrum) 

 
Internal Expanding Brake 

An internal  expanding brake consists of two shoes  S1  and  S2  as shown in Fig.. The outer surface of the  

shoes are lined with some friction material (usually with Ferodo) to increase the coefficient of friction and to prevent 

wearing away of the metal. Each shoe is pivoted at one end about a fixed fulcrum O1 and O2 and made to contact  a  

cam at the other end. When the cam rotates, the shoes are pushed outwards against the rim of the drum. The friction 

betweentheshoesandthedrumproducesthebrakingtorqueandhencereducesthespeedofthedrum.Theshoesare 

 

normally held in off position by a spring as  shown in Fig. 19.24. The drum encloses the entire mechanism to keep    

out dust and moisture. This type of brake is commonly used in motor cars and lighttrucks. 

Weshallnowconsidertheforcesactingonsuchabrake,whenthedrumrotatesintheanticlockwisedirection 

asshowninFig.19.25.Itmaybenotedthatfortheanticlockwisedirection,thelefthandshoeisknownas leadingor 

primaryshoewhiletherighthandshoeisknown astrailingorsecondaryshoe. 
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Consider a small element of the brake lining AC subtending an angle at the centre. Let OA makes an angle  with 

OO1asshowninFig.19.25.Itisassumedthatthepressuredistributionontheshoeisnearlyuniform,howeverthefrictionlining wears 

out more at the free end. Since the shoe turns about O1, therefore the rate of wear of the shoe lining at A will be 

proportional to the radial displacement of that point. The rate of wear of the shoe lining varies directly as the perpendicular 

distance from O1 to OA, i.e. O1B. From the geometry of thefigure, 

O1B = OO1  sin

and normal pressureat 

A, 
 

pN sin  or pNp1 sin



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 36 
 

Normal force acting on the element, 
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Types of Dynamometers 

Following are the two types of dynamometers, used for measuring the brake power of an engine. 

1. Absorption dynamometers,and 

2. Transmissiondynamometers. 

In the absorption dynamometers, the entire energy or power produced by the engine is absorbed by the 

friction resistances of the brake and is transformed into heat, during the process of measurement. But in the 

transmission dynamometers, the energy is not wasted in friction but is used for  doing work.  The energy or  

power produced by the engine is transmitted through the dynamometer to some other machines where the power 

developed is suitablymeasured. 

Classification of Absorption Dynamometers 

The following two types of absorption dynamometers are important from the subject point of view : 

1. Prony brake dynamometer,and 

2. Rope brakedynamometer. 
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These dynamometers are discussed, in detail, in the following pages. 

Prony Brake Dynamometer 

A simplest form of an absorption type dynamometer is a prony brake dynamometer, as shown in Fig. 19.31.  

It consists of two wooden blocks placed around a pulley fixed to the shaft of an engine whose power is  required to     

be measured. The blocks are clamped by means of two bolts and nuts, as shown in Fig.. A helical spring is provided 

between the nut and the upper block to adjust the pressure on the pulley to control its speed.  The upper block has a 

long lever attached to it and carries a weight W at its outer end. A counter weight is placed  at  the other end of the 

leverwhichbalancesthebrakewhenunloaded.TwostopsS,Sareprovidedtolimitthemotionofthelever 

 

When the brake is to be put in operation, the long end of the lever is loaded with suitable weights W and the nuts 

are tightened until the engine shaft runs at a constant speed and the lever is in horizontal position. Under these conditions , 

the moment due to the weight W must balance the mo- ment of the frictional resistance between the blocks and the pulley.  

 

Rope Brake Dynamometer 

It is another form of absorption type dynamometer which is most 

commonly used for measur- ing the brake power of the engine. It consists  

of one, two or more ropes wound around the flywheel or rim of a pulley 

fixed rigidly to the shaft of an engine. The upper end of the ropes  is 

attached to a spring balance while the lower end of the ropes is kept in 

position by applying a dead weight as shown in Fig..  In order to prevent  

the slipping of the rope over the flywheel, wooden blocks are placed at 

intervals around the circumference of the flywheel. In the operation of the 

brake, the engine is made to run at a constant speed. The frictional torque, 

due to the rope, must be equal to the torque being transmitted  by  the 

engine. 
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Classification of Transmission Dynamometers 

The following types of transmission dynamometers are important from the subject point of view : 

1. Epicyclic-traindynamometer, 

2. Belt transmission dynamometer,and 

3. Torsiondynamometer. 

We shall now discuss these dynamometers, in detail, in the following pages. 

Epicyclic-train Dynamometer 

 

An epicyclic-train dynamometer, as shown in Fig. 19.33, consists of a simple epicyclic train of gears, i.e. a 

spur gear, an annular gear (a gear having internal teeth) and a pinion. The spur gear is keyed to the engine shaft (i.e. 

driving shaft) and rotates in anticlockwise direction. The annular gear is also keyed to the driving shaft and rotates in 

clockwise direction. The pinion or the intermediate gear meshes with both the spur and annular gears. The pinion 

revolves freely on  a lever which is pivoted to the common axis of the driving and driven  shafts.  A weight  wis  placed 

at the smaller end of the lever in order to keep it in position. A little consideration  will  show that  if the  friction of the 

pin on which the pinion  rotates is  neglected, then the tangential effort  P exerted  by the spur gear on  the pinion and 

the tangential reaction of the annular gear on the pinion areequal. 

Since these efforts act in the upward direction as shown, therefore total upward force on the lever acting 

through the axis of the pinion is 2P. This force tends to rotate the lever about its fulcrum and it is balanced by a dead 

weight W at the end of the lever. The stops S, S are provided to control the movement of the lever. 

For equilibrium of the lever, taking moments about the fulcrum F, 

2P × a =W.L     or P = W.L/2a 

 

Belt Transmission Dynamometer-Froude or Throneycroft Transmission Dynamometer 

When the belt is transmitting power from one pulley to another, the tangential effort on the driven pulley is 

equal to the difference between the tensions in the tight and slack sides of the belt.  A  belt  dynamometer  is  

introduced to measure directly the difference between the tensions of the belt, while it isrunning. 
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A belt transmission dynamometer, as shown in Fig. 19.34, is called a Froude or Throneycroft transmission 

dynamometer. It consists of a pulley A(called driving pulley) which is rigidly fixed to the shaft of an engine whose power is 

required to be measured. There is another pulley B (called driven pulley) mounted on another shaft to which the power from 

pulleyAistransmitted.ThepulleysAandBareconnectedbymeansofacontinuousbeltpassingroundthetwoloosepulleysC 

andDwhicharemountedonaT-shapedframe.TheframeispivotedatEanditsmovementiscontrolledbytwostopsS,S.Since the 

tension in the tight side of the belt (T1) is greater than the tension in the slack side of the belt (T2), therefore the total force 

acting on the pulley C (i.e. 2T1) is greater than the total force acting on the pulley D (i.e. 2T2). It is thus obvious that the 

frame causes movement about E in the anticlockwise direction. In order to balance it, a weight W is applied at a distance L 

from E on the frame as shown inFig. 

Now taking moments about the pivot E, neglecting friction, 

2T1 a 2T2  a W . 
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UNIT 2 

GYROSCOPE  

Introduction 

‘Gyre’ is a Greek word, meaning ‘circular motion’ and Gyration means the whirling motion. A 

gyroscope is a spatial mechanism which is generally employed for the study of precessional 

motion of a rotary body. Gyroscope finds applications in gyrocompass, used in aircraft, naval  

ship, control system of missiles and space shuttle. The gyroscopic effect is also felt on the 

automotive vehicles while negotiating aturn. 

A gyroscope consists of a rotor mounted in the inner gimbal. The inner gimbal  is  

mounted in the outer gimbal which itself is mounted on a fixed frame as shown in Fig.. When the 

rotor spins about X-axis with angular velocity ω rad/s and the inner gimbal precesses (rotates) 

about Y-axis, the spatial mechanism is forced to turn about Z-axis other than its own axis of 

rotation, and the gyroscopic effect is thus setup. The resistance to this motion is  called  

gyroscopiceffect. 

 

 

ANGULAR MOTION 

 
A rigid body, (Fig.) spinning at a constant angular velocity ω rad/s about a spin axis 

through the mass centre. The angular momentum ‘H’ of the spinning body is represented by a 

vector whose magnitude is ‘Iω’. I represents the  mass amount of inertia of the rotor about the  

axis ofspin. 
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The direction of the angular momentum can be found from the right hand screw rule or   

the right hand thumb rule. Accordingly, if the fingers of the right hand are bent in the direction of 

rotation of rotor, then the thumb indicates the direction ofmomentum. 

 
 

GYROSCOPIC COUPLE 

 
Consider a rotary body of mass m having radius of gyration k mounted on the shaft 

supported at two bearings. Let the rotor spins (rotates) about X-axis with constant  angular 

velocity  rad/s. The X-axis is, therefore, called spin axis, Y-axis, precession axis and Z-axis, the 

couple or torque axis (Fig.). 

 

The angular momentum of the rotating mass is given by, 
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H = mk2  = I

Now, suppose the shaft axis (X-axis) precesses through a small angle  about Y-axis in 

the plane XOZ, then the angular momentum varies from H to H + H, where H is the change in 

the angular momentum, represented by vector ab  [Figure 15.2(b)].  For the small value of angle  

of rotation 50, we can write 

However, the rate of change of angular momentum is: 

 
 

C = Ip 

 

Direction of Spin vector, Precession vector and Couple/Torque vector with 

forced precession 

To determine the direction of spin, precession and torque/couple vector, right hand 

screw rule or right hand rule is used. The fingers represent the rotation of the disc and the thumb 
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shows the direction of the spin, precession and torque vector (Fig.). 
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The method of determining the direction of couple/torque vector is as follows 

 

Case (i): 

Consider a rotor rotating in anticlockwise direction when seen from the right (Fig.5 and 

Fig. 6), and to precess the spin axis about precession axis in clockwise and anticlockwise  

direction when seen from top. Then, to determine the active/reactive gyroscopic couple vector,  

the following procedure isused. 

 Turn the spin vector through 900 in the direction of precession on the XOZplane 

 The turned spin vector will then correspond to the direction of active gyroscopic 

couple/torquevector 

 The reactive gyroscopic couple/torque vector is taken opposite to active gyro vector 

direction 
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Case (ii): 

Consider a rotor rotating in clockwise direction when seen from the right (Fig.7 and Fig. 8), and  

toprecess the spin axis about precession axis in clockwise and anticlockwise direction when seen 

from top. Then, to determine the active/reactive gyroscopic couplevector, 

 Turn the spin vector through 900 in the direction of precession on the XOZplane 

 The turned spin vector will then correspond to the direction of active gyroscopic 

couple/torquevector 

 The reactive gyroscopic couple/torque vector is taken opposite to active gyro vector 

direction 
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The resisting couple/ reactive couple will act in the direction opposite to that of the gyroscopic 

couple. This means that, whenever the axis of spin changes its direction, a gyroscopic couple is 

applied to it through the bearing which supports the spinning axis. 

 

 

GYROSCOPIC EFFECT ON SHIP 

Gyroscope is used for stabilization and directional control of a ship sailing in the rough 

sea. A ship, while navigating in the rough sea, may experience the following three different types 

ofmotion: 

(i) Steering—The turning of ship in a curve while movingforward 

(ii)  Pitching—The movement of the ship up and down from horizontal position in a 

vertical plane about transverseaxis 

(iii) Rolling—Sideway motion of the ship about longitudinalaxis 

For stabilization of a ship against any of the above motion, the major requirement is that 

the gyroscope shall be made to precess in such a way that reaction couple exerted by the rotor 

opposes the disturbing couple which may act on theframe. 

Ship Terminology 

(i) Bow – It is the fore end ofship 

(ii) Stern – It is the rear end ofship 

(iii) Starboard – It is the right hand side of the ship looking in the direction ofmotion 

(iv) Port – It is the left hand side of the ship looking in the direction ofmotion 
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Consider a gyro-rotor mounted on the ship along longitudinal axis (X-axis) as shown in 

Fig.10 and rotate in clockwise direction when viewed from rear end of the ship. The  angular 

speed of the rotor is  rad/s. The direction of angular momentum vector oa, based on direction 

of rotation of rotor, is decided using right hand thumb rule as discussed earlier. The gyroscopic  

effect during the three types of motion of ship isdiscussed. 

Gyroscopic effect on Steering of ship 

(i) Left turn with clockwiserotor 

When ship takes a left turn and the rotor rotates in clockwise direction viewed from 

stern, the gyroscopic couple act on the ship is analyzed in the followingway. 
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Note that, always reactive gyroscopic couple is considered for analysis. From the above 

analysis (Fig.), the couple acts over the ship between stern and bow.  This  reaction  couple tends 

to raise the front end (bow) and lower the rear end (stern) of theship. 

 
(ii) Right turn with clockwiserotor 

When ship takes a right turn and the rotor rotates in clockwise direction viewed from 

stern, the gyroscopic couple acts on the ship is analyzed (Fig 14). Again, the couple acts in  

vertical plane, means between stern and bow. Now the reaction couple tends to lower the bow 

of the ship and raise thestern. 
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(iii) Left turn with anticlockwiserotor 

When ship takes a left turn and the rotor rotates in anticlockwise direction viewed from 

stern, the gyroscopic couple act on the ship is analyzed in the following way (Fig.). 

 
 

 

The couple acts over the ship is between stern and bow. This reaction couple tends to  

press or dip the front end (bow) and raise the rear end (stern) of theship. 
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(iv) Right turn with anticlockwiserotor 

When ship takes a right turn and the rotor rotates in anticlockwise direction viewed from 

stern, the gyroscopic couple act on the ship is according to Fig 20. Now, the reaction couple 

tends to raise the bow of the ship and dip thestern 
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Gyroscopic effect on Pitching of ship 

The pitching motion of a ship generally occurs due to waves which can be approximated  

as sine wave. During pitching, the ship moves up and down from the horizontal position  in 

vertical plane (Fig.) 

 
 

 
Consider a rotor mounted along the longitudinal axis and rotates in clockwise direction 

when seen from the rear end of the ship. The direction of momentum for this condition is shown 

byvectorox(Fig.24).Whentheshipmovesupthehorizontalpositioninverticalplanebyan 
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anglefrom the axis of spin, the rotor axis (X-axis) processes about Z- axis in XY-plane and  for 

this case Z-axis becomes precession axis. The gyroscopic couple acts in anticlockwise direction 

about Y-axis and the reaction couple acts in opposite direction, i.e. in clockwise direction, which 

tends to move towards right side (Fig.25). However,  when the ship pitches  down the axis of 

spin, the direction of reaction couple is reversed and the ship turns towards left side(Fig.) 

 

 

 

 

.  

 

 

Similarly, for the anticlockwise direction of the rotor viewed from the rear end (Stern) of 

the ship, the analysis may be done. 
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Gyroscopic effect on Rolling of ship. 

The axis of the rotor of a ship is mounted along the longitudinal axis of ship  and  

therefore, there is no precession of this axis. Thus, no effect of gyroscopic couple on the ship 

frame is formed when the shiprolls 

 
Gyroscopic Effect on Aeroplane 

Aeroplanes are subjected to gyroscopic effect when it taking off, landing and negotiating 

left or right turn in the air. 

Let 

ω = Angular velocity of the engine rotating parts in rad/s, 

m = Mass of the engine and propeller in kg, 

rW= Radius of gyration in m, 

I = Mass moment of inertia of engine and propeller in kg m2, 

V = Linear velocity of the aeroplane in m/s, 

R = Radius of curvature in m, 

ωp=Angular velocity of precession =v/R rad/s 

Gyroscopic couple acting on the aero plane = C = I p 

 

Let us analyze the effect of gyroscopic couple acting on the body of the aero plane for 

various conditions. 

 
Case (i): PROPELLER rotates in CLOCKWISE direction when seen from rear end and 

Aeroplane turns towards LEFT 
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According to the analysis, the reactive  gyroscopic couple tends to dip the tail and raise  

the nose ofaeroplane. 

 

Case (ii): PROPELLER rotates in CLOCKWISE direction when seen from rear  end 

and Aeroplane turns towardsRIGHT 
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According to the analysis, the reactive  gyroscopic couple tends to raise the tail and dip  

the nose ofaeroplane. 

 

Case (iii): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear 

end and Aeroplane turns towards LEFT 
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The analysis indicates, the reactive gyroscopic couple tends to raise the tail and dip the 

nose of aeroplane. 

 

Case (iv): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear 

end and Aeroplane turns towards RIGHT 
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The analysis shows, the reactive gyroscopic couple tends to raise the tail and dip the nose of 

aeroplane. 
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Case (v): PROPELLER rotates in CLOCKWISE direction when seen from rear 

end and Aeroplane takes off or nose moveupwards 

 



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 63 
 

 
 

The analysis show, the reactive gyroscopic couple tends to turn the nose  ofaeroplane toward  

right 

 

Case (vi): PROPELLER rotates in CLOCKWISE direction when seen from rear  end 

and Aeroplane is landing or nose movedownwards 
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The reactive gyroscopic couple tends to turn the nose of aeroplane toward left 
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Case (vii): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear 

end and Aeroplane takes off or nose move upwards 

 

The reactive gyroscopic couple tends to turn the nose of aeroplane toward left 
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Case (viii): PROPELLER rotates in ANTICLOCKWISE direction when seen from rear 

end and Aeroplane is landing or nose move downwards 

 

 

The analysis show, the reactive gyroscopic couple tends to turn the nose  ofaeroplane toward  

right 
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Stability of Automotive Vehicle 

A vehicle running on the road is said to be stable when no wheel is supposed to leave the 

road surface. In other words, the resultant reactions by the road surface on wheels should act in 

upward direction. For a moving vehicle, one of the reaction is due to gyroscopic couple produced 

by the rotating wheels and rotating parts of the engine. Let us discuss stability of two and four 

wheeled vehicles when negotiating a curve/turn. 

 

Stability of Two Wheeler negotiating a turn 

 

Fig shows a two wheeler vehicle taking left turn over a curved path. The vehicle is 

inclined to the vertical for equilibrium by an angle  known as angle of heel. 

 
Let 

m = Mass of the vehicle and its rider in kg, 

W = Weight of the vehicle and its rider in newtons = m.g,   

h = Height of the centre of gravity of the vehicle and rider, 

rW= Radius of thewheels, 

R = Radius of track or curvature, 

IW = Mass moment of inertia of each wheel, 

IE = Mass moment of inertia of the rotating parts of the engine, 
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ωW= Angular velocity of the wheels, 

ωE= Angular velocity of the engine rotating parts, 

G = Gear ratio = ωE/ ωW, 



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 69 
 

 
 

v = Linear velocity of the vehicle = ωW× rW, 

θ = Angle of heel. It is inclination of the vehicle to the vertical for equilibrium 
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Let us consider the effect of the gyroscopic couple and centrifugal couple on the wheels. 

 

 

1. Effect of GyroscopicCouple 

Weknowthat, V = ωW×rW 

ωE= G .ωW or 

Angular momentum due to wheels = 2 IwωW 

Angular momentum due to engine and transmission = IE ωE 

Total angular momentum (I xω) = 2 IwωW IEωE 

 
 

 

Velocity of precession = ωp 

It is observed that, when the wheels move over the curved path, the vehicle is always 

inclined at an angle θ with the vertical plane as shown in Fig… This angle is known as ‘angle of 

heel’. In other words, the axis of spin is inclined to the horizontal at an angle θ , as shown in 

Fig.73 Thus, the angular momentum vector I ω due to spin is represented by OA inclined to OX  

atanangleθ.But,theprecessionaxisisinvertical.Therefore,thespinvectorisresolvedalongOX. 

 
Gyroscopic Couple, 

 

 

 

Note:  When the engine is rotating in the same direction as that of wheels, then the positive sign   

is used in the above equation. However, if the engine rotates in opposite direction to wheels, 

then negative sign isused. 
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The gyroscopic couple will act over the vehicle outwards i.e., in the anticlockwise 

direction when seen from the front of the two wheeler. This couple tends to overturn/topple the 

vehicle in the outward direction as shown inFig… 
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2. Effect of CentrifugalCouple 
 
 

 

Centrifugal force, 

 

 
Centrifugal Couple 

 
 

 

 

 
 

The Centrifugal couple will act over the two wheeler outwards i.e., in the anticlockwise 

direction when seen from the front of the two wheeler. This couple tends to overturn/topple the 

vehicle in the outward direction as shown in Fig. 

 
Therefore, the total Over turning couple: C = Cg + Cc 
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For the vehicle to be in equilibrium, overturning couple should be equal to balancing 

couple acting in clockwise direction due to the weight of the vehicle and rider. 

C = mgh sin




For the stability, overturning couple must be equal to balancing couple, 
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Therefore, from the above equation, the value of angle of heel (θ) may be determined, so that 

the vehicle does not skid. Also, for the given value of θ, the maximum vehicle speed in the turn 

with out skid may be determined. 
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Stability of Four Wheeled Vehicle negotiating a turn. 

 

 
Consider a four wheels automotive vehicle as shown in Figure 82. The engine is mounted 

at the rear with its crank shaft parallel to the rear axle. The centre of gravity of the vehicle lies 

vertically above the ground where total weight of the vehicle is assumed to be acted upon. 

 
Let 

m = Mass of the vehicle (kg) 

W = Weight of the vehicle (N) = m.g, 

h = Height of the centre of gravity of the vehicle (m) 

rW= Radius of the wheels (m) 

R = Radius of track or curvature (m) 

IW = Mass moment of inertia of each wheel (kg-m2) 

IE = Mass moment of inertia of the rotating parts of the engine (kg-m2) 

ωW= Angular velocity of the wheels (rad/s) 

ωE= Angular velocity of the engine (rad/s) G 

= Gear ratio = ωE/ ωW, 

v = Linear velocity of the vehicle (m/s)=ωW× rW, 

x = Wheel track (m) 

b = Wheel base (m) 
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(i) Reaction due to weight ofVehicle 

Weight of the vehicle.Assuming that weight of the vehicle (mg) is equally distributed over four 

wheels. Therefore, the force on each wheel acting downward is mg/4 and the reaction by the 

road surface on the wheel acts in upward direction. 

 

 
 

(ii) Effect of Gyroscopic couple due toWheel 

Gyroscopic couple due to four wheels is, 

Cw= 4 Iwp 

(iii) Effect of Gyroscopic Couple due toEngine 

Gyroscopic couple due to rotating parts of the engine 

CE = IE p = IE G p 
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Therefore, Total gyroscopic couple: 

Cg = Cw+ CE= p (4IW  ± IEG) 

When the wheels and rotating parts of the engine rotate in the same direction,  then 

positive sign is used in the above equation. Otherwise negative sign should beconsidered. 

Assuming that the vehicle takes a left turn, the reaction gyroscopic couple on the vehicle 

acts between outer and inner wheels. 

 

 
 

This gyroscopic couple tends to press the outer wheels and lift the inner wheels 
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Due to the reactive gyroscopic couple, vertical reactions on the road surface will be 

produced. The reaction will be vertically upwords on the outer wheels and vertically downwords 

on the inner wheels. Let the magnitude of this reaction at the two outer and inner wheels be P 

Newtons, then, 

P x X = Cg 

 

Road reaction on each outer/Inner wheel, 

 

 
(iii)Effect of Centrifugal Couple 

When a vehicle moves on a curved path, a centrifugal force acts on the vehicle in outward 

direction through the centre of gravity of the vehicle( Fig…) 
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Centrifugal force, 

 

This force forms a Centrifugal couple. 

 

This centrifugal couple tends to press the outer and lift the inner 

 

Due to the centrifugal couple, vertical reactions on the road surface will be produced. The 

reaction will be vertically upwords on the outer wheels and vertically downwords on the inner 

wheels. Let the magnitude of this reaction at the two outer and inner wheels be F Newtons, then, 

 

 
 

Road reaction on each outer/Inner wheel, 
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The reactions on the outer/inner wheels are as follows, 

 

Total vertical reaction at each outerwheels 

 
 

Total vertical reaction at each innerwheels 
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TURNING MOMENT DIAGRAM AND FLY WHEELS 

Turning Moment Diagram: The turning moment diagram is graphical representation of the turning moment or crank effort for 

various positions of crank. 

Single cylinder double acting engine: 
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Turning moment diagram for 4-stroke I.C engine: 
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Turning moment diagram for a multi cylinder engine: 

 

Fluctuation of Energy: 

The difference in the kinetic energies at the point is called the maximum fluctuation of 

energy. 
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Fluctuation of Speed: 

This is defined as the ratio of the difference between the maximum and minimum 

angular speeds during a cycle to the mean speed of rotation of the crank shaft. 

Maximum fluctuation of energy: 
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Coefficient of fluctuation of energy: 
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Coefficient of fluctuation of speed: 

 

Energy stored in flywheel: 

 
A flywheel is a rotating mass that is used as an energy reservoir in a machine. It absorbs energy in the form of kinetic 

energy, during those periods of crank rotation when actual turning moment is greater than the resisting moment and 

release energy, by way of parting with some of its K.E, when the actual turning moment is less than the resisting 

moment 

 



DYNAMICS OF MACHINERY 

 

Department of Mechanical Engineering Page 89 
 

PROBLEMS 

1 The mass of flywheel of an engine is 6.5 tonnes and the radius of gyration is 1.8 metres. It is found from the turning 

moment diagram that the fluctuation of energy is 56 kN-m. If the mean speed of the engine is 120 r.p.m., find the maximum 

and minimum speeds. 

 

2. The flywheel of a steam engine has a radius of gyration of 1 m and mass 2500 kg. The starting torque of the steam 

engine is 1500 N-m and may be assumed constant. Determine: 1. the angular acceleration of the fly

wheel, and 2. the 

kinetic energy of the flywheel after 10 seconds from the start. 
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3. A horizontal cross compound steam engine develops 300 kW at 90 r.p.m. The coefficient of fluctuation of energy as 
found from the turning moment diagram is to be 0.1 and the fluctuation of speed is to be kept within ± 0.5% of the mean 
speed. Find the weight of the flywheel required, if the radius of gyration is 2 metres. 
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                                                                                UNIT 3  

                                                                                Governor 

A governor, or speed limiter or controller, is a device used to measure and regulate the speed of a machine 

Functions of Governor (2M Important) 

 The function of a governor is to regulate the mean speed of an engine, when there are variations in the 

load. 

 When the load on an engine increases, its speed decreases, therefore it becomes necessary to increases the 

supply of working fluid. 

 When the load on the engine decreases, its speed increases and thus less working fluid is required.  

 The governor automatically controls the supply of working fluid to the engine with the varying load 

conditions and keeps the mean speed of the engine within certain limits. 

 

Flywheel   

Flywheel is the machine member which avoids the fluctuation of energy in a power plant  

Functions of Flywheel (2M Important)   

 The function of the flywheel is to control speed variations caused by change in turning moment during a 

cycle. 

 It stores energy and gives it out whenever required. 

 It controls and regulates the speed only during one cycle 

 It does not have any control over the quantity of charge supplied in the engine. 

 

Types of Centrifugal Governor 

 
 

 

 

Difference between Flywheel and Governor (Important 2M) 

https://en.wikipedia.org/wiki/Speed_limiter
https://en.wikipedia.org/wiki/Machine
https://en.wikipedia.org/wiki/Speed
https://en.wikipedia.org/wiki/Machine


 

  

 

 

 

Centrifugal Governors 



 

  

 

 

 

The centrifugal governors are based on the balancing of centrifugal force on the rotating balls by an equal and opposite radial force, 

known as the controlling force*.It consists of two balls of equal mass, which are attached to the arms as shown in Fig. 18.1. These balls 
are known as governor balls or fly balls. The balls revolve with a spindle, which is driven by the engine through bevel gears. The upper 

ends of the arms are pivoted to the spindle, so that the balls may rise up or fall down as they revolve about the vertical axis. The arms 

are connected by the links to a sleeve, which is keyed to the spindle. This sleeve revolves with the spindle ; but can slide up and down. 

The balls and the sleeve rises when the spindle speed increases, and falls when the speed decreases. In order to limit the travel of the 

sleeve in upward and downward directions, two stops S, S are provided on the spindle. The sleeve is connected by a bell crank lever to a 

throttle valve. The supply of the working fluid decreases when the sleeve rises and increases when it falls. When the load on the engine 

increases, the engine and the governor speed decreases. This results in the decrease of centrifugal force on the balls. Hence the balls 

move inwards and the sleeve moves downwards. The downward movement of the sleeve operates a throttle valve at the other end of the 

bell crank lever to increase the supply of working fluid and thus the engine speed is increased. In this case, the extra power output is 

provided to balance the increased load. When the load on the engine decreases, the engine and the governor speed increases, which 

results in the increase of centrifugal force on the balls. Thus the balls move outwards and the sleeve rises upwards. This upward 
movement of the sleeve reduces the supply of the working fluid and hence the speed is decreased. In this case, the power output is 

reduced. 

 

Watt Governor 
The simplest form of a centrifugal governor is a Watt governor, as shown in Fig. 18.2. It is 

basically a conical pendulum with links attached to a sleeve of negligible mass. The arms of the 

governor may be connected to the spindle in the following three ways : 

1. The pivot P, may be on the spindle axis as shown in Fig. 18.2 (a). 
2. The pivot P, may be offset from the spindle axis and the arms when produced intersect at 

O, as shown in Fig. 18.2 (b). 

3. The pivot P, may be offset, but the arms cross the axis at O, as shown in Fig. 18.2 (c). 

 



 

  

 

 

 

m = Mass of the ball in kg, 

w = Weight of the ball in newtons = m.g, 

T = Tension in the arm in newtons, 

= Angular velocity of the arm and ball about the spindle axis in 

rad/s, 

r = Radius of the path of rotation of the ball i.e. horizontal distance 
from the centre of the ball to the spindle axis in metres, 

FC = Centrifugal force acting on the ball in newtons = m.2.r, and 

h = Height of the governor in metres. 

 

Example 18.1. Calculate the vertical height of a Watt governor when it rotates at 60 r.p.m. 

Also find the change in vertical height when its speed increases to 61 r.p.m. 

Solution. Given : N1 = 60 r.p.m. ; N2 = 61 r.p.m. 

Initial height 

We know that initial height, 

 
 

 



 

  

 

 

 

 

 
 

 

Porter Governor                                                                                      (10m  Important) 
The Porter governor is a modification of a Watt’s governor, with central load attached to the sleeve as shown in Fig. 18.3 (a). The load 

moves up and down the central spindle. This additional downward force increases the speed of revolution required to enable the balls to 

rise to any predetermined level. 

Consider the forces acting on one-half of the governor as shown in Fig. 18.3 (b).. 

 



 

  

 

 

 
1. Method of resolution of forces 

 

 

 
 

 



 

  

 

 

 

 

 
 

                                  

 
 
 

 

 



 

  

 

 

 

 

 

2. Instantaneous centre method 

                                               

   

       

     
 
 

 

 



 

  

 

 

 

 

 

 

 
 

 

PROBLEMS 

1. A Porter governor has equal arms each 250 mm long and pivoted on the axis of rotation. Each ball has a mass 

of 5 kg and the mass of the central load on the sleeve is 25 kg. The radius of rotation of the ball is 150 mm when 

the governor begins to lift and 200 mm when the governor is at maximum speed. Find the minimum and 

maximum speeds and range of speed of the governor. 
Solution. Given : BP = BD = 250 mm = 0.25 m ; m = 5 kg ; M = 15 kg ; r1 = 150 mm 

= 0.15m; r2 = 200 mm = 0.2 m 

 



 

  

 

 

 
 

 

 
2. The arms of a Porter governor are each 250 mm long and pivoted on the governor axis. The mass of each ball 

is 5 kg and the mass of the central sleeve is 30 kg. The radius of  rotation of the balls is 150 mm when the sleeve 

begins to rise and reaches a value of 200 mm for maximum speed. Determine the speed range of the governor. If 

the friction at the sleeve is equivalent of 20 N of load at the sleeve, determine how the speed range is modified. 

(IMPORTANT) 

 

Solution. Given : BP = BD = 250 mm ; m = 5 kg ; M = 30 kg ; r1 = 150 mm ; r2 = 200 mm 

First of all, let us find the minimum and maximum speed of the governor. The minimum and maximum position of the governor is 

shown in Fig. 18.6 (a) and (b) respectively. Let N1 = Minimum speed when r1 = BG = 150 mm, and N2 = Maximum speed when r2 = BG 

= 200 mm. 

 



 

  

 

 

 

 
 

 
 

 
 

 



 

  

 

 

 
 

 
 

 
3. A Porter governor has all four arms 250 mm long. The upper arms are attached on the axis of rotation and the 

lower arms are attached to the sleeve at a distance of 30 mm from the axis. The mass of each ball is 5 kg and the 

sleeve has a mass of 50 kg. The extreme radii of rotation are 150 mm and 200 mm. Determine the range of speed 

of the governor. 
 

Solution.  Given: BP = BD = 250 mm ; DH = 30 mm ; m = 5 kg ; M = 50 kg ; r1 = 150 mm ; r2 = 200 mm 

First of all, let us find the minimum and maximum speed of the governor. The minimum and 

maximum position of the governor is shown in Fig. 18.8 (a) and (b) respectively. 

 



 

  

 

 

 
 

 

 

 

 

 



 

  

 

 

 
 

 
 

 

 

 

 

 

 

4. The arms of a Porter governor are 300 mm long. The upper arms are pivoted on the axis of rotation. The lower 

arms are attached to a sleeve at a distance of 40 mm from the axis 

of rotation. The mass of the load on the sleeve is 70 kg and the mass of each ball is 10 kg. Determine the 

equilibrium speed when the radius of rotation of the balls is 200 mm. If the friction is equivalent to a load of 20 

N at the sleeve, what will be the range of speed for this position ? 
Solution. Given : BP = BD = 300 mm ; DH = 40 mm ; M = 70 kg ; m = 10 kg ; r = BG = 200 mm 

Equilibrium speed when the radius of rotation r = BG = 200 mm 

Let N = Equilibrium speed. 

. From the figure, we find that height of the governor, 



 

  

 

 

 

 

                                    
 

 

 

h = PG = (BP)2 – (BG)2 = (300)2 – (200)2 = 224 mm = 0.224m 

   BF = BG – FG = 200 – 40 = 160 

                                                                                                                                   
                                            

                        
 



 

  

 

 

  

 

 

 

 

 

 

Proell Governor 

 



 

  

 

 

 

 

 

 

 

 

 



 

  

 

 

 

 

1 A Proell governor has equal arms of length 300 mm. The upper and lower ends of the arms are pivoted on the 

axis of the governor. The extension arms of the lower links are each 80 mm long and parallel to the axis when the 

radii of rotation of the balls are 150 mm and 200 mm. The mass of each ball is 10 kg and the mass of the central 

load is 100 kg. Determine the range of speed of the governor. 

 

 
 

  



 

  

 

 

 

 

  

 

 



 

  

 

 

Hartnell Governor 

 

 

  

 



 

  

 

 

 

 

 



 

  

 

 

 

 

 



 

  

 

 

 

1. A Hartnell governor having a central sleeve spring and two right-angled bell crank levers moves between 290 

r.p.m. and 310 r.p.m. for a sleeve lift of 15mm. The sleeve arms and the ball arms are 80 mm and 120 mm 

respectively. The levers are pivoted at 120 mm from the governor axis and mass of each ball is 2.5 kg. The ball 

arms are parallel to the governor axis at the lowest equilibrium speed. Determine : 1. loads on the spring at the 

lowest and the highest equilibrium speeds, and 2. stiffness of the spring.(IMPORTANT)(10M) 

 

 



 

  

 

 

 

 

 
2. In a spring loaded Hartnell type governor, the extreme radii of rotation of the balls are 80 mm and 120 mm. 

The ball arm and the sleeve arm of the bell crank lever are equal in length. The mass of each ball is 2 kg. If the 

speeds at the two extreme positions are 400 and 420 r.p.m., find : 1. the initial compression of the central spring, 

and 2. the spring constant. 

 



 

  

 

 

 
 

 

 

 

 

 

 

 
Hartung Governor 

 

A spring controlled governor of the Hartung type is shown in Fig. 18.26 (a). In this type of 

governor, the vertical arms of the bell crank levers are fitted with spring balls which compress against the frame 

of the governor when the rollers at the horizontal arm press against the sleeve. 

 



 

  

 

 

 
Sensitiveness of Governors (imp 2 M) 

sensitiveness is defined as the ratio of the difference between the maximum and minimum equilibrium speeds to 

the mean equilibrium speed. 

 
 

 

 

 

 

 

Isochronous Governors (imp 2 M) 

 

 
Hunting (imp 2 M) 

A governor is said to be hunt if the speed of the engine fluctuates continuously above and below the mean speed. 

This is caused by a too sensitive governor which changes the fuel supply by a large amount when a small change 

in the speed of rotation takes place. 

Effort and Power of a Governor (imp 2 M) 

The effort of a governor is the mean force exerted at the sleeve for a given percentage change of speed. 



 

  

 

 

BALANCING 

OF 

ROTATING MASSES 
 
 

INTRODUCTION: 

 
When man invented the wheel, he very quickly learnt that if it wasn‟t completely round and if it didn‟t rotate 

evenly about it‟s central axis, then he had a problem! 

What the problem he had? 

The wheel would vibrate causing damage to itself and it‟s support mechanism and in severe cases, is unusable. 

A method had to be found to minimize the problem. The mass had to be evenly  distributed about the rotating 

centerline so that the resultant vibration was at a minimum. 

 

UNBALANCE: 

 
The condition which exists in a rotor when vibratory force or motion is imparted to its bearings as a result of 
centrifugal forces is called unbalance or the uneven distribution of mass about a rotor‟s rotating centerline. 
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Rotating centerline: 

The rotating centerline being defined as the axis about which the rotor would rotate if not constrained by its 

bearings. (Also called the Principle Inertia Axis or PIA). 

 

Geometric centerline: 
The geometric centerline being the physical centerline of the rotor. 

 
When the two centerlines are coincident, then the rotor will be in a state of balance.  When they are apart, the 

rotor will be unbalanced. 

 
Different types of unbalance can be defined by the relationship between the two centerlines. These include: 

Static Unbalance – where the PIA is displaced parallel to the geometric centerline. 

(Shown above) 

Couple Unbalance – where the PIA intersects the geometric centerline at the center of gravity. (CG) 

Dynamic Unbalance – where the PIA and the geometric centerline do not coincide or 
touch. 

The most common of these is dynamic unbalance. 

 

Causes of Unbalance: 

In the design of rotating parts of a machine every care is taken to eliminate any out of balance or couple, but there 

will be always some residual unbalance left in the finished part because of 

1. slight variation in the density of the material or 
2. inaccuracies in the casting or 

3. inaccuracies in machining of the parts. 
 

Why balancing is so important? 

1. A level of unbalance that is acceptable at a low speed is completely unacceptable at a 

higher speed. 
2. As machines get bigger and go faster, the effect of the unbalance is much more severe. 
3. The force caused by unbalance increases by the square of the speed. 

4. If the speed is doubled, the force quadruples; if the speed is tripled the force increases 



 

  

 

 

 

by a factor of nine! 

 
Identifying and correcting the mass distribution and thus minimizing the force and resultant vibration is very very 

important 

 

BALANCING: 

 
Balancing is the technique of correcting or eliminating unwanted inertia forces or moments in rotating or 

reciprocating masses and is achieved by changing the location of the mass centers. 

The objectives of balancing an engine are to ensure: 

 
1. That the centre of gravity of the system remains stationery during a complete 

revolution of the crank shaft and 

2. That the couples involved in acceleration of the different moving parts 

balance each other. 
 

Types of balancing: 

 

a) Static Balancing: 

i) Static balancing is a balance of forces due to action of gravity. 

ii) A body is said to be in static balance when its centre of gravity is in the 

axis of rotation. 
b) Dynamic balancing: 

i) Dynamic balance is a balance due to the action of inertia forces. 

ii) A body is said to be in dynamic balance when the resultant moments or 

couples, which involved in the acceleration of different moving parts is 

equal to zero. 

iii) The conditions of dynamic balance are met, the conditions of static 

balance are also met. 
 

In rotor or reciprocating machines many a times unbalance of forces is produced due to inertia forces associated 

with the moving masses. If these parts are not properly balanced, the dynamic forces are set up and forces not 

only increase loads on bearings and stresses in the various components, but also unpleasant and dangerous 

vibrations. 

 
Balancing is a process of designing or modifying machinery so that the unbalance is reduced to an acceptable 

level and if possible eliminated entirely. 

 

BALANCING OF ROTATING MASSES 

 
When a mass moves along a circular path, it experiences a centripetal acceleration and a force is required to 

produce it. An equal and opposite force called centrifugal force acts radially outwards and is a disturbing force on 

the axis of rotation. The magnitude of this remains constant but the direction changes with the rotation of the 

mass. 



 

  

 

 

 

In a revolving rotor, the centrifugal force remains balanced as long as the centre of the mass of rotor lies on the 

axis of rotation of the shaft. When this does not happen, there is an eccentricity and an unbalance force is 

produced. This type of unbalance is common in steam turbine rotors, engine crankshafts, rotors of compressors, 
centrifugal pumps etc. 

 

 
The unbalance forces exerted on machine members are time varying, impart vibratory motion and noise, there are 

human discomfort, performance of the machine deteriorate and detrimental effect on the structural integrity of the 

machine foundation. 

 
Balancing involves redistributing the mass which may be carried out by addition or 

removal of mass from various machine members Balancing 
of rotating masses can be of 

1. Balancing of a single rotating mass by a single mass rotating in the same plane. 

2. Balancing of a single rotating mass by two masses rotating in different planes. 

3. Balancing of several masses rotating in the same plane 

4. Balancing of several masses rotating in different planes 
 

STATIC BALANCING: 

A system of rotating masses is said to be in static balance if the combined mass centre of the system lies on the 

axis of rotation 

DYNAMIC BALANCING; 
When several masses rotate in different planes, the centrifugal forces, in addition to being out of balance, also 

form couples. A system of rotating masses is in dynamic balance  when there does not exist any resultant 

centrifugal force as well as resultant couple. 
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CASE 1. 

BALANCING OF A SINGLE ROTATING MASS 
ROTATING IN THE SAME PLANE 

 
MASS BY A SINGLE 

 

 

 

 
Consider a disturbing mass m1 which is attached to a shaft rotating at ω rad/s. Let 

 

r1  radius of rotation of the mass m1 

 distance between the axis of rotation of the shaft and the centre of 

gravity of the mass m1 

 
The centrifugal force exerted by mass m1 on the shaft is given by, 

 

F m 2 r                  (1) 

 
This force acts radially outwards and produces bending moment on the shaft. In order to counteract the effect of 

this force Fc1 , a balancing mass m2 may be attached in the same plane of rotation of the disturbing mass m1 such 

that the centrifugal forces due to the two masses are equal and opposite. 



 

  

 

 

c2 2 2 

1 1 2 2 

 

 

 
Let,  

 
r2  radius of rotation of the mass m2 

 distance between the axis of rotation of the shaft and the centre of 

gravity of the mass m2 

 

Therefore the centrifugal force due to mass m2 will be, 

 

F m ω
2 
r                  (2 ) 

 

Equating equations (1) and (2), we get 

 

Fc1 Fc2 

m ω2 r  m ω2 r or m1 r1  m2 r2                (3) 

 

The product  m2  r2  can be split up in any convenient way.  As for as possible the radius  of rotation of mass m2 

that is r2 is generally made large in order to reduce the balancing mass m2. 

 
 

CASE 2: 

BALANCING OF A SINGLE ROTATING MASS BY TWO MASSES ROTATING IN DIFFERENT 
PLANES. 

 
There are two possibilities while attaching two balancing masses: 

1. The plane of the disturbing mass may be in between the planes of the two balancing masses. 

2. The plane of the disturbing mass may be on the left or right side of two planes 

containing the balancing masses. 

 

In order to balance a single rotating mass by two masses rotating  in  different  planes which are parallel to the 

plane of rotation of the disturbing mass i) the net dynamic force acting on the shaft must be equal to zero, i.e. the 

centre of the masses of the system must lie on the axis of rotation and this is the condition for static balancing ii) 

the net couple due to the dynamic forces acting on the shaft must be equal to zero, i.e. the algebraic sum of the 

moments about any point in the plane must be zero. The conditions i) and ii) together give dynamic balancing. 
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CASE 2(I): 

 

THE PLANE OF THE DISTURBING MASS LIES IN BETWEEN THE PLANES OF THE TWO 
BALANCING MASSES. 

 

 

 

 

 
Consider the disturbing mass m lying in a plane A which is to be balanced by two  rotating masses m1 and m2 

lying in two different planes M and N which are parallel to  the plane A as shown. 

 
Let r, r1 and r2 be the radii of rotation of the masses in planes A, M and N respectively. Let L1, L2 and L be the 

distance between A and M, A and N, and M and N respectively. Now, 

The centrifugal force exerted by the mass m in plane A will be, 

 

F m ω
2 
r                   (1) 

 

Similarly, 

The centrifugal force exerted by the mass m1 in plane M will be, 

 

F m ω
2 
r                   (2) 
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And the centrifugal force exerted by the mass m2 in plane N will be, 

 

F m ω
2 
r                   (3) 

 

For the condition of static balancing, 

 

Fc  Fc1  Fc2 

or mω2 r  m ω2 r  m ω2 r 

i.e. m r  m1 r1  m2 r2                (4) 

 
Now, to determine the magnitude of balancing force in the plane „M‟ or the dynamic  force at the bearing „O‟ of a 

shaft, take moments about „ P ‟ which is the point of intersection of the plane N and the axis of rotation. 
 

Therefore,  

Fc1 xL  Fc xL2 

or m ω2 r x L  mω2 r xL 

Therefore, 

m1 r1 L  mrL2 or  m r  mr 
L

2
 

1 1 
L

        (5) 

 
Similarly, in order to find the balancing force in plane „N‟ or the dynamic force at the bearing „P‟ of a shaft, take 

moments about „ O ‟ which is the point of intersection of the plane M and the axis of rotation. 

 
Therefore, 

 

Fc2 xL  Fc xL1 

or m ω
2 

r x L  mω
2 

r xL 

Therefore, 

m2 r2 L  mrL1 or  m r  mr 
L

1
 

2 2 
L

 
       (6) 

 

For dynamic balancing equations (5) or (6) must be satisfied along with equation (4). 



 

  

 

 

1 1 2 2 

 

 

 

CASE 2(II): 

 

WHEN THE PLANE OF THE DISTURBING MASS LIES ON ONE END OF THE TWO PLANES 
CONTAINING THE BALANCING MASSES. 

 

 

 

 
For static balancing, 

 

Fc1  Fc  Fc2 

or m ω2 r mω2 r  m ω2 r 

i.e. m1 r1  m r  m2 r2                (1) 

 
For dynamic balance the net dynamic force acting on the shaft and the net couple due to dynamic forces acting 

on the shaft is equal to zero. 

To find the balancing force in the plane „M‟ or the dynamic force at the bearing „O‟ of a shaft, take moments 

about „P‟. i.e. 



 

  

 

 

1 1 2 

 

F xL  F xL 
c1 c 2 

or m ω
2 
r x L  mω

2 
r xL Therefore, 

m1 r1 L  mrL2 or m r  mr 
L 2

 
1 1 

L
        (2) 

 
Similarly, to find the balancing force in the plane „N‟ , take moments about „O‟, i.e., 

 

F xL  F xL 
c2 c 1 

or m ω2 r x L  mω2 r xL 
2 2 1 

Therefore, 

m2 r2 L  mrL1 or  m r  mr 
L1

 
2 2 

L
        (3) 

 

CASE 3: 

BALANCING OF SEVERAL MASSES ROTATING IN THE SAME PLANE 

 

 
 

 
Consider a rigid rotor revolving with a constant angular velocity ω rad/s. A number of masses say, four are 

depicted by point masses at different radii in the same transverse  plane. 



 

  

 

 

1 1 2 2 3 3 4 4 

 

If m1, m2, m3 and m4 are the masses revolving at radii r1, r2, r3 and r4 respectively in the same plane. 

The centrifugal forces exerted by each of the masses are Fc1, Fc2, Fc3 and Fc4 respectively. Let F be the vector sum 

of these forces. i.e. 

 

F Fc1 Fc2   Fc3  Fc4 

m ω2 r  m ω2 r m ω2 r m ω 2 r          (1) 

1 1 2 2 3 3 4 4 

 

The rotor is said to be statically balanced if the vector sum F is zero. If the vector sum F  is not zero, i.e. the rotor 

is unbalanced, then introduce a counterweight ( balance weight) of mass „m‟ at radius „r‟ to balance the rotor so 

that, 

 

m ω
2 
r  m ω

2 
r m ω 

2 
r m ω 

2 
r m ω 

2 
r 0          (2) 

or 

m1 r1  m2 r2 m3 r3 m4 r4 m r 0                 (3) 

 

The magnitude of either „m‟ or „r‟ may be selected and the other can be 
calculated. In general, if  ∑m i  ri    is the vector sum of m1 r1 , m2  r2 , m3 r3 , m4  r4   

etc, then, 

∑mi ri  mr 0       (4) 

 
The above equation can be solved either analytically or graphically. 

 

1. Analytical Method: 
 

Procedure: 

Step 1: Find out the centrifugal force or the product of mass and its radius of rotation exerted by each of masses 

on the rotating shaft, since 2 
is same  for  each  mass, therefore the magnitude of the centrifugal force for each 

mass is proportional to the product of the respective mass and its radius of rotation. 

Step 2: Resolve these forces into their horizontal and vertical components and find their sums. i.e., 

 
Sum of the horizontal components 

n 

 ∑m iri cos θ i  m1r1 cos θ1  m2 r2  cos θ2  m 3r3  cos θ 3          

i 1 

 
 

Sumof the vertical components 
n 

 ∑m iri sin θ i  m1r1 sin θ1  m2 r2 sin θ2  m3 r3  sin θ 3          

i1 



 

  

 

 

n 

 

Step 3: Determine the magnitude of the resultant centrifugal force 

 

R 



Step 4: If  is the angle, which resultant force makes with the horizontal, then 

n 

∑miri sin θi 

tanθ i1 
 

∑miri cos θi 

i1 

 

Step 5: The balancing force is then equal to the resultant force, but in opposite direction. Step 6: Now find out 

the magnitude of the balancing mass, such that 

 

R mr 

 
Where, m = balancing mass and r = its radius of rotation 

 

2. Graphical Method: 

 
Step 1: 

Draw the space diagram with the positions of the several masses, as shown. 

 
Step 2: 

Find out the centrifugal forces or product of the mass and radius of rotation exerted by each mass. 

 
Step 3: 

Now draw the vector diagram with the obtained centrifugal forces or product of the masses and radii of rotation. 

To draw vector diagram take a suitable scale. 

Let ab, bc, cd, de represents the forces Fc1, Fc2, Fc3 and Fc4 on the vector diagram. 

Draw „ab‟ parallel to force Fc1 of the space diagram, at „b‟ draw a line parallel to force Fc2. Similarly draw lines 

cd, de parallel to Fc3 and Fc4 respectively. 

 
Step 4: 

As per polygon law of forces, the closing side „ae‟ represents the resultant force in magnitude and direction as 

shown in vector diagram. 

 
 

Step 5: 

The balancing force is then , equal and opposite to the resultant force. Step 6: 

 n 

 
i1 

∑ mr cos θ  mr sin θ 
 

2 

 n  
2 

i i i   
 i1 

∑ i i i  
 



 

  

 

 

c 

 

Determine the magnitude of the balancing mass ( m ) at a given radius of rotation ( r ), such that, 
 

F mω2 r 

or 

mr resultantofm1 r1 ,m2 r2 , m3 r3 andm4 r4 

 

CASE 4: 

 

BALANCING OF SEVERAL MASSES ROTATING IN DIFFERENT PLANES 

 
When several masses revolve in different planes, they may be transferred to a reference plane and this reference 

plane is a plane passing through a point on the axis of rotation and perpendicular to it. 

 
When a revolving mass in one plane is transferred to a reference plane, its effect is to  cause a force of same 

magnitude to the centrifugal force of the revolving mass to act in the reference plane along with a couple of 
magnitude equal to the product of the force  and the distance between the two planes. 

In order to have a complete balance of the several revolving masses in different planes, 

1. the forces in the reference plane must balance, i.e., the resultant force must be zero and 

2. the couples about the reference plane must balance i.e., the resultant couple must be 

zero. 
 

A mass placed in the reference plane may satisfy the first condition but the couple  balance is satisfied only by 

two forces of equal magnitude in different planes. Thus, in general, two planes are needed to balance a system of 

rotating masses. 



 

  

 

 

 

Example: 

Consider four masses m1, m2, m3 and m4 attached to the rotor at radii r1, r2, r3 and r4 respectively. The masses m1, 

m2, m3 and m4 rotate in planes 1, 2, 3 and 4 respectively. 

 
 

 
a) Position of planes of masses 

 
Choose a reference plane at „O‟ so that the distance of the planes 1, 2, 3 and 4 from „O‟ are L1, L2 , L3 and L4 

respectively. The reference plane chosen is plane „L‟. Choose another plane „M‟ between plane 3 and 4 as 

shown. 

 
Plane „M‟ is at a distance of Lm from the reference plane „L‟. The distances of  all the other planes to the left of 

„L‟ may be taken as negative( -ve) and to the right may be taken as positive (+ve). 

 
The magnitude of the balancing masses mL and mM in planes L and M may be obtained by following the steps 

given below. 

 
 

Step 1: 

Tabulate the given data as shown after drawing the sketches of position of planes of masses and angular position 

of masses. The planes are tabulated in the same order in which they occur from left to right. 



 

  

 

 

 

 

 

 
 

 

Plane 

1 

 

Mass (m) 

2 

 

Radius (r) 

3 

Centrifugal 

force/ω2 

(m r) 
4 

Distance 

from Ref. 

plane „L‟ (L) 

5 

Couple/ ω2
 

(m r L) 

6 

1 m1 r1 m1 r1 - L1 - m1 r1 L1 

L mL rL mL rL 0 0 

2 m2 r2 m2 r2 L2 m2 r2 L2 

3 m3 r3 m3 r3 L3 m3 r3 L3 

M mM rM mM rM LM mM rM LM 

4 m4 r4 m4 r4 L4 m4 r4 L4 
 
 

Step 2: 

Construct the couple polygon first. (The couple polygon can be drawn by taking a convenient scale) 

Add the known vectors and considering each vector parallel to the radial line of the mass draw the couple 

diagram. Then the closing vector will be „mM rM LM‟. 

 
 

 
The vector d ‟o‟ on the couple polygon represents the balanced couple. Since the balanced couple CM is 

proportional to mM rM LM , therefore, 



 

  

 

 

M M    M M 



 

C  m  r  L    vector d' o' 

or m   
vector d' o'

 
 

r
M  

L
M

 

 

From this the value of mM in the plane M can be determined and the angle of inclination 

 of this mass may be measured from figure (b). 

Step 3: 

Now draw the force polygon (The force polygon can be drawn by taking a convenient scale) by adding the known 

vectors along with „mM rM‟. The closing vector will be „mL rL‟. This represents the balanced force. Since the 

balanced force is proportional to „mL rL‟ 

, 

mL rL  vector eo 

or m 
vector eo 

L 

L 

 

From  this  the  balancing  mass  mL can be obtained in plane „L‟ and the angle of inclination of this 

mass with the horizontal may be measured from figure (b). 

 

Problems and solutions 
Problem 1. 

Four masses A, B, C and D are attached to a shaft and revolve in the same plane. The masses are 12 kg, 10 kg, 18 
kg and 15 kg respectively and their radii of rotations are 40 mm, 50 mm, 60 mm and 30 mm. The angular 

position of the masses B, C and D are 60
0 

, 135
0 

and 270
0 

from mass A. Find the magnitude and position of the 
balancing mass at a radius of 100 mm. 

 
Solution: 

Given: 
 

Mass(m) 

kg 

Radius(r) 

m 

Centrifugal force/ω2
 

(m r) 

kg-m 

Angle(  ) 

mA = 12 kg 
(reference mass) 

rA = 0.04 m mArA = 0.48 kg-m   00
 

A 

mB = 10 kg rB = 0.05 m mBrB = 0.50 kg-m  600
 

B 

mC = 18 kg rC = 0.06 m mCrC = 1.08 kg-m  1350
 

C 

mD = 15 kg rD = 0.03 m mDrD = 0.45 kg-m   2700
 

D 

 
To determine the balancing mass „m‟ at a radius of r = 0.1 m. 

 
The problem can be solved by either analytical or graphical method. 

r 

M 



 

  

 

 

A 

 

Analytical Method: 

 

Step 1: 

Draw the space diagram or angular position of the masses. Since all the angular position of the masses are given 

with respect to mass A, take  the angular  position  of mass A  as  00 
. 

 

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are proportional to the product of 

the mass and its radius, the product „mr‟ can be calculated and tabulated. 

 

Step 2: 

Resolve the centrifugal forces horizontally and vertically and find their sum. Resolving mArA, 

mBrB, mCrC and mDrD horizontally and taking their sum gives, 

 
n 

∑miri cos θi  mArA cosθA   mBrB cosθB  mCrC cosθC  mDrD cosθD 

i1 

0.48 x cos 00   0.50 x cos 600   1.08 x cos 1350   0.45 x cos 2700
 

 0.48  0.25(0.764)0  0.034 kg m          (1) 

 
 

Resolving mArA, mBrB, mCrC and mDrD vertically and taking their sum gives, 



 

  

 

 

 0.0342  
 0.7472 

n 

 

n 

∑miri sin θi mArA sinθA   mBrBsinθB  mCrC sinθC mDrDsinθD 

i1 

0.48 x sin 00  0.50 x sin 600  1.08 x sin1350  0.45 x sin2700
 

 0 0.433  0.764 (0.45)0.747 kgm          (2) 

 

 
Step 3: 

Determine the magnitude of the resultant centrifugal force 

 

 0.748kg  m 

 

Step 4: 

The balancing force is then equal to the resultant force, but in opposite direction. Now find out the magnitude of 

the balancing mass, such that 

 

R mr 0.748kg  m 

Therefore, m
R 
 
0.748 

7.48 kg Ans 
r 0.1 

 

Where, m = balancing mass and r = its radius of rotation 

 

Step 5: 

Determine the position of the balancing mass „m‟. 

If  is the angle, which resultant force makes with the horizontal, then 
 

n 

∑miri sin θi 

tanθ i1 

mr cos θ 

 
0.747 

 

  0.034 

 

 21.97 

∑ 
i1 

 

i i i 

and θ  87.4 0 or 92.60
 

 

Remember  ALL  STUDENTS  TAKE   COPY   i.e.   in   first   quadrant   all   angles (sin , cos and 

tan ) are positive, in second quadrant only sin is positive, in third quadrant only tan is positive and 

R 
 
∑ 
n 

 
2 

 n 
 

2 

i1 

mr cos θ  mr sin θ 
i i i   

 i1 

∑ i i i 
 

 



 

  

 

 

in fourth quadrant only cos  is positive. 

 
Since numerator is positive and denominator is negative, the resultant force makes with the horizontal, an angle 

(measured in the counter clockwise direction) 

 92.6 0
 



 

  

 

 

M 

A 

 

The balancing force is then equal to the resultant force, but in opposite direction. 

The balancing mass „m‟ lies opposite to the radial direction of the resultant force and the 

angle of inclination with the horizontal clockwise 

direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphical Method: 

is,  87.4 0 angle measured in the 

 

Step 1: 

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are proportional to the product of 

the mass and its radius, the product „mr‟ can be calculated and tabulated. 

 
Draw the space diagram or angular position of the masses taking the actual angles( Since all angular position of 

the masses are given with respect to mass A, take the angular position of mass A as   00 
). 



 

  

 

 

 

 

 

  

 

 

Step 2: 

Now draw the force polygon (The force polygon can be drawn by taking a convenient scale) by adding the 

known vectors as follows. 

Draw a line „ab‟ parallel to force FCA (or the product mArA to a proper scale) of the space diagram. At „b‟ draw a 

line „bc‟ parallel to FCB (or the product mBrB). Similarly draw  lines „cd‟, „de‟ parallel to FCC (or the product mCrC) 

and FCD (or the product mDrD) respectively. The closing side „ae‟ represents the resultant force „R‟ in magnitude 

and direction as shown on the vector diagram. 

 

Step 3: 
The balancing force is then equal to the resultant force, but in opposite direction. 

 
R mr 

Therefore, m
R 
 7.48 kg Ans 

r 

The balancing mass „m‟ lies opposite to the radial direction of the resultant force and the angle of inclination 

with the horizontal is, 
M  
87.4 0 

angle  measured  in  the  clockwise direction. 



 

  

 

 

A 

 

Problem 2: 

The four masses A, B, C and D are 100 kg, 150 kg, 120 kg and 130 kg attached to a shaft and revolve in the same 

plane. The corresponding radii of rotations are 22.5 cm, 17.5 cm, 25 cm and 30 cm and the angles measured from 

A are 45
0
, 120

0 
and 255

0
. Find  the position and magnitude of the balancing mass, if the radius of rotation is 60 

cm. 

 
Solution: 

 

Analytical Method: 
 

Given: 

 

Mass(m) 

kg 

Radius(r) 

m 

Centrifugal force/ω2
 

(m r) 

kg-m 

Angle(  ) 

mA = 100 kg 
(reference mass) 

rA = 0.225 m mArA = 22.5 kg-m   00
 

A 

mB = 150 kg rB = 0.175 m mBrB = 26.25 kg-m   450
 

B 

mC = 120 kg rC = 0.250 m mCrC = 30 kg-m  1200
 

C 

mD = 130 kg rD = 0.300 m mDrD = 39 kg-m   2550
 

D 

m =? r = 0.60    ? 

 
Step 1: 

Draw the space diagram or angular position of the masses. Since all the angular position of the masses are given 

with respect to mass A, take  the angular  position  of mass A  as  00 
. 

 
Tabulate the given data as shown. Since the magnitude of the centrifugal forces are proportional to the product of 

the mass and its radius, the product „mr‟ can be calculated and tabulated. 



 

  

 

 

15.972   
 6.872 

i   i i A   A A B   B B C   C C D   D D 

i   i i A   A A B   B B C   C C D   D D 

 

Step 2: 
Resolve the centrifugal forces horizontally and vertically and find their sum. Resolving mArA, 

mBrB, mCrC and mDrD horizontally and taking their sum gives, 

n 

∑ m r cos θ   m r cosθ  m r cosθ  m r cosθ  m r cosθ 

i1 

 22.5 x cos 00   26.25 x cos 450   30 x cos 1200   39 x cos 2550
 

 22.5  18.56  (15)  (10.1)  15.97 kg  m          (1) 

 

 

 
Resolving mArA, mBrB, mCrC and mDrD vertically and taking their sum gives, 

 

n 

∑ m r sin θ   m r sin θ  m r sinθ  m r sinθ  m r sinθ 

i1 

 22.5 x sin 00    26.25 x sin 450   30 x sin 1200    39 x sin 2550
 

 0  18.56  25.98  (37.67)  6.87 kg  m          (2) 

 

 

 

Step 3: 
Determine the magnitude of the resultant centrifugal force 

 

R 



  17.39 kg  m 

 

Step 4: 

The balancing force is then equal to the resultant force, but in opposite direction. Now find out the magnitude of 

the balancing mass, such that 

 

R  m r  17.39 kg  m 

Therefore, m  
R 
 

17.39 
 28.98 kg Ans 

r 0.60 

 
Where, m = balancing mass and r = its radius of rotation 

 

 
n 

i1 

∑ m r cos θ  m r sin θ  
2 

 
n 

 
2 

i i 
i  i1 

∑ i i 
i  



 

  

 

 

Step 5: 

Determine the position of the balancing mass „m‟. 

If  is the angle, which resultant force makes with the horizontal, then 



 

  

 

 

 
n 

∑ m iri  sin θ i 

tan θ  i1 


6.87 

 
 

 
 0.4302 

n 

∑ 
i1 

m
i
r

i  
cos θ 

i
 15.97 

and θ  23.28 0
 

 

The balancing mass „m‟ lies opposite to the radial direction of the resultant force and the 

angle  of  inclination  with  the horizontal is,   203.28 0 
counter clockwise direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphical Method: 

angle measured in the 

 

Step 1: 

Tabulate the given data as shown. Since the magnitude of the centrifugal forces are proportional to the product of 

the mass and its radius, the product „mr‟ can be calculated and tabulated. 



 

  

 

 

Step 3: 

Now draw the force polygon (The force polygon can be drawn by taking a convenient 

scale) by adding the known vectors as follows. 

A 

 

Step 2: 

 
Draw the space diagram or angular position of the masses taking the actual angles (Since all angular position of 

the masses are given with respect to mass A, take the angular position of mass A as  00 
). 

 

Draw a line „ab‟ parallel to force FCA (or the product mArA to a proper scale) of the space diagram. At „b‟ draw a 

line „bc‟ parallel to FCB (or the product mBrB). Similarly draw  lines „cd‟, „de‟ parallel to FCC (or the product mCrC) 

and FCD (or the product mDrD) respectively. The closing side „ae‟ represents the resultant force „R‟ in magnitude 

and direction as shown on the vector diagram. 

 

Step 4: 
The balancing force is then equal to the resultant force, but in opposite direction. 

 

R mr 

Therefore, m
R 

 29 kg Ans 

r 

The balancing mass „m‟ lies opposite to the radial direction of the resultant force and the angle of inclination 

with the horizontal is,   203 0 
angle measured in the counter clockwise direction. 



 

  

 

 

 

Problem 3: 
A rotor has the following properties. 

 

 

Mass 
 

magnitude 
 

Radius 
 

Angle 
Axial distance 

from first mass 

1 9 kg 100 mm   00
 

A 
- 

2 7 kg 120 mm  600
 

B 
160 mm 

3 8 kg 140 mm  1350
 

C 
320 mm 

4 6 kg 120 mm   2700
 

D 
560 mm 

 
If the shaft is balanced by two counter masses located at 100 mm radii and revolving in planes midway of planes 

1 and 2, and midway of 3 and 4, determine the magnitude of the masses and their respective angular positions. 

 
Solution: 

 

Analytical Method: 

 

 
Plane 

1 

 

Mass (m) 

kg 
2 

 

Radius (r) 

m 
3 

Centrifugal 

force/ω2 

(m r) 

kg-m 
4 

Distance 

from Ref. 

plane „M‟ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

1 9.0 0.10 m1 r1 = 0.9 -0.08 -0.072 00 

M mM = ? 0.10 mM rM = 0.1 mM 0 0 M ? 

2 7.0 0.12 m2 r2 = 0.84 0.08 0.0672 600
 

3 8.0 0.14 m3 r3 = 1.12 0.24 0.2688 1350
 

N mN = ? 0.10 mN rN = 0.1 mN 0.36 mN rN lN = 0.036 mN N ? 

4 6.0 0.12 m4 r4 = 0.72 0.48 0.3456 2700
 

 

For dynamic balancing the conditions required are, 

∑mr  mM  rM    mN rN  0  ------------ (I) 

 

∑mrl  mN rN lN   0  ----------------- (II) 

 
 

for force balance 

for couple balance 



 

  

 

 

N N 

 
 
 
 

 
 

Step 1: 

Resolve the couples into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

∑mrl cosθ  mN rN lN cosθN  0 

On substitution we get 

 0.072 cos 00  0.0672 cos 600 0.2688 cos1350
 

0.3456 cos2700 0.036 mN cosθN  0 

i.e. 0.036 mN cosθN 0.2285      (1) 

Sum of the vertical components gives, 

 

∑mrl sin θ   m
N 
r

N 
l
N 
sinθ 

N  
 0 

On substitution we get 

 0.072 sin 00   0.0672 sin 600   0.2688 sin1350
 

0.3456 sin2700  0.036 m  sinθ   0 

i.e. 0.036 mN sin θN 0.09733      (2) 

Squaring and adding (1) and (2), we get 



 

  

 

 

N N N 

M   M M 

M   M M 

 

m r l   0.22852  
 0.097332 

i.e., 0.036mN  0.2484 

Therefore, m  
0.2484 

6.9kg Ans 

N 
0.036 

Dividing (2) by (1), we get 

tanθN 

 
0.09733 

0.2285 

and θN 23.07 0
 

 

Step 2: 

Resolve the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

∑mr cosθ  mM rM  cosθM   mN rN  cosθN   0 

On substitution we get 

0.9 cos 00   0.84 cos 600  1.12 cos1350   0.72 cos2700
 

m r  cosθ  0.1x6.9xcos23.070   0 

i.e. mM rM  cosθM  1.1629     (3) 

 
Sum of the vertical components gives, 

∑mr sin θ  mM rM  sin θM   mN rN  sinθN   0 

On substitution we get 

0.9 sin00  0.84 sin 600 1.12 sin1350 0.72sin2700
 

m r  sinθ  0.1x6.9xsin23.070   0 

i.e. mM rM  sinθM  1.0698      (4) 

Squaring and adding (3) and (4), we get 

 
mM rM 

i.e., 0.1mM 1.580 

Therefore, m 
1.580 

15.8 kg Ans 

M 
0.1 

 1.16292  
  1.06982 



 

  

 

 

M 

Dividing (4) by (3), we get 

tanθM 

  1.0698 

1.1629 

and θ 222.610 Ans 



 

  

 

 

 

 
 

 

Graphical Solution: 



 

  

 

 

 

Problem 4: 

The system has the following data. 

 

m1 1.2 kg r  1.135 m@  113.40
 

1 

m1 1.8 kg r  0.822 m@  48.80
 

2 

m1  2.4 kg r  1.04 m@  251.40
 

3 

 
The distances of planes in metres from plane A are: 

 

l1  0.854 , l2  1.701,l3  2.396 ,lB  3.097 

Find the mass-radius products and their angular locations needed to dynamically balance the system using the 

correction planes A and B. 

 

Solution: Analytical Method 

 

 

 
 

 

Plane 

1 

 
Mass (m) 

kg 
2 

 
Radius (r) 

m 
3 

Centrifugal 

force/ω2 (m 

r) 

kg-m 

4 

Distance 

from Ref. 

plane „A‟ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

A mA rA mA rA =? 0 0 A ? 

1 1.2 1.135 1.362 0.854 1.163148 113.40
 

2 1.8 0.822 1.4796 1.701 2.5168 48.80
 

3 2.4 1.04 2.496 2.396 5.9804 251.40
 

B mB rB mB rB =? 3.097 3.097 mB rB B ? 



 

  

 

 

 

Step 1: 

 
Resolve the couples into their horizontal and vertical components and find their sums. Sum of the horizontal 

components gives, 

∑mrl cosθ   mB rB lB cosθB   0 

On substitution we get 

1.163148 cos 113.4 0  2.5168 cos 48.80 5.9804 cos251.40
 

3.097 mB rB  cosθB   0 

i.e. m r cosθ  
0.71166 

     (1) 
B   B B 

3.097 

 
Sum of the vertical components gives, 

∑mrl sinθ  mB rB lB sinθB  0 

On substitution we get 

1.163148 sin 113.4 0  2.5168 sin 48.80 5.9804 sin251.40
 

3.097 mB rB sinθB  0 

i.e. m r sinθ  
2.7069 

     (2) 
B  B B 

3.097 

Squaring and adding (1) and (2), we get 

0.71166 2
 2.7069 2

 

mB rB 
 
3.097    

  

 0.9037 kg  m 

3.097  

Dividing (2) by (1), we get 

tanθ  
2.7069 

 
 

and θ 75.270 Ans 

B 
0.71166 

B
 

 
 



 

  

 

 

Step 2: 
Resolve the forces into their horizontal and vertical components and find their sums. Sum of the horizontal 

components gives, 



 

  

 

 

A 

A 

 

∑mr cosθ  mA rA cosθ A  mB rB cosθB  0 

On substitution we get 

1.362 cos 113.4 0  1.4796 cos 48.80 2.496 cos251.40
 

m r 

A A 

cosθ  0.9037 cos75.270 
 0 

A 

Therefore 

mA rA cosθA 0.13266        (3) 

Sum of the vertical components gives, 

∑mr sinθ  mA rA sinθA  mB rB sinθB  0 

On substitution we get 

1.362 sin 113.4 0 
 1.4796 sin 48.80 

 2.496 sin 251.40
 

m
A 
r

A
 sinθ  0.9037 sin75.270 

 0 

Therefore 

mA rA sinθA   0.87162          (4) 

 
Squaring and adding (3) and (4), we get 

 
mA rA 

 0.8817 kg  m 

 
Dividing (4) by (3), we get 

 

tanθA 

  0.87162 

0.13266 

 

and θ   81.350 Ans 

 
 

Problem 5: 

A shaft carries four masses A, B, C and D of magnitude 200 kg, 300 kg, 400 kg and 200 kg respectively and 

revolving at radii 80 mm, 70 mm, 60 mm and 80 mm in planes measured from A at 300 mm, 400 mm and 700 

mm. The angles between the cranks measured anticlockwise are A to B 45
0
, B to C 70

0 
and C to D 120

0
.  The  

balancing masses are to be placed in planes X and Y. The distance between the planes A and X is 100 mm, 

between X and Y is 400 mm and between Y and D is 200 mm. If the balancing masses revolve at a radius of 100 

mm, find their magnitudes and angular positions. 

0.132662  
  0.871622 



 

  

 

 

 

Graphical solution: 

 
Let, mX be the balancing mass placed in plane X and mY be the balancing mass placed in plane Y which are to be 

determined. 

 

Step 1: 
Draw the position of the planes as shown in figure (a). 

 
 

 
Let X be the reference plane (R.P.). The distances of the planes to the right of the plane X are taken as positive 

(+ve) and the distances of planes to the left of X plane are taken as negative(-ve). The data may be tabulated as 

shown 

 
Since the magnitude of the centrifugal forces are proportional to the product of the mass and its radius, the 

product „m r‟ can be calculated and tabulated. Similarly the magnitude of the couples are proportional to the 

product of the mass , its radius and  the axial distance from the reference plane, the product „m r l‟ can be 

calculated and tabulated as shown. 



 

  

 

 

 

 
 

 
Plane 

1 

 

Mass 

(m) kg 

2 

 

Radius (r) 

m 
3 

Centrifugal 

force/ω2 

(m r) 

kg-m 
4 

Distance 

from Ref. 

plane „X‟ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

A 200 0.08 mA rA = 16 -0.10 -1.60 - 

X mX =? 0.10 mX rX = 0.1 mX 0 0 X ? 

B 300 0.07 mB rB = 21 0.20 4.20 A to B 450
 

C 400 0.06 mC rC = 24 0.30 7.20 B to C 700
 

Y mY =? 0.10 mY rY = 0.1 mY 0.40 mY rY lY = 0.04 mY Y ? 

D 200 0.08 mD rD = 16 0.60 9.60 C to D 1200
 

 

Step 2: 

 
Assuming the mass A as horizontal draw the sketch of angular position of masses as shown in figure (b). 

 

Step 3: 

Draw the couple polygon to some suitable scale by taking the values of „m r l‟ (column no. 6) of the table as 

shown in figure (c). 

 

 
Draw line o‟a‟ parallel to the radial line of mass mA. 

At a‟ draw line a‟b‟ parallel to radial line of mass mB. 

Similarly, draw lines b‟c‟, c‟d‟ parallel to radial lines of masses mC and mD respectively. Now, join d‟ to o‟ 

which gives the balanced couple. 



 

  

 

 

Y 

X 

 

 

0.04 m vector d'o'7.3 kg  m2
 

We get, 
Y
 

or mY 182.5 kg Ans 
 

Step 4: 

To find the angular position of the mass mY draw a line omY in figure (b) parallel to d‟o‟ of the couple polygon. 
 

By measurement we get θ 120
 

in the clockwise direction from mA. 

 

Step 5: 

Now draw the force polygon by considering the values of „m r‟ (column no. 4) of the 

table as shown in figure (d). 

Follow the similar procedure of step 3. The closing side of the force polygon i.e. „e o‟ represents the balanced 

force. 

 

mX rX  vectoreo35.5 kg  m 

or m
X  
355 kg  Ans 

 

Step 6: 

The angular position of mX is determined by drawing a line omX parallel to the line „e o‟ of the force polygon in 

figure ( b). From figure (b) we get, 

θ 1450 
, measured clockwise from mA. Ans 

 

Problem 6: 
A, B, C and D are four masses carried by a rotating shaft at radii 100 mm, 125 mm, 200 mm and 150 mm 

respectively. The planes in which the masses revolve are spaced 600 mm apart and the mass of B, C and D are 10 

kg, 5 kg and 4 kg respectively. Find the required mass A and relative angular settings of the four masses so that 

the shaft shall be in complete balance. 

Solution: 

Graphical Method: 
 

Step 1: 

Let, mA be the balancing mass placed in plane A which is to be determined along with the relative angular settings 

of the four masses. 

Let A be the reference plane (R.P.). Assume 

the mass B as horizontal 

Draw the sketch of angular position of mass mB (line omB ) as shown in figure (b). The 

data may be tabulated as shown. 



 

  

 

 

Step 2: 

To determine the angular settings of mass C and D the couple polygon is to be drawn first as shown in fig (c). 

Take a convenient scale 

 

 
Plane 

1 

 

Mass 

(m) kg 

2 

 

Radius (r) 

m 
3 

Centrifugal force/ω2
 

(m r) 

kg-m 

4 

Distance 

from Ref. 

plane „A‟ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

A 

(R.P.) 
mA= ? 0.1 mA rA = 0.1 mA 0 0 A ? 

B 10 0.125 mB rB = 1.25 0.6 0.75 B 0 

C 5 0.2 mC rC = 1.0 1.2 1.2 C ? 

D 4 0.15 mD rD = 0.6 1.8 1.08 D ? 

 

Draw a line o‟b‟ equal to 0.75 kg-m
2 

parallel to the line omB. At point o‟ and b‟ draw vectors o‟c‟ and b‟c‟ 

equal to 1.2 kg-m
2 

and 1.08 kg-m
2 

respectively. These vectors intersect at point c‟. 
 

For the construction of force polygon there are four options. 

 

Any one option can be used and relative to that the angular settings of mass C and D 
are determined. 



 

  

 

 

Step 3: 

Now in figure (b), draw lines omC and omD parallel to o‟c‟ and b‟c‟ respectively. 
 

From measurement we get, 

D 
C 

 
 

 
 

 

θ  1000
 and θ  2400

 Ans 

 

Step 4: 
In order to find mA and its angular setting draw the force polygon as shown in figure (d). 

 

 

Closing side of the force polygon od represents the product mA rA . i.e. 



 

  

 

 

A 

 

mA  rA    0.70 kg- m 

Therefore, 
m 

 0.70 
7 kg Ans 

A 

A 

 

Step 5: 

 
Now draw line omA parallel to od of the force polygon. By measurement, we get, 

 

θ   1550 Ans 

 

Problem 7: 

A shaft carries three masses A, B and C. Planes B and C are 60 cm and 120 cm from A.  A , B and C are 50 kg, 

40 kg and 60 kg respectively at a radius of 2.5 cm. The angular position of mass B and mass C with A are 90
0 

and 

210
0 

respectively.  Find  the unbalanced force and couple. Also find the position and magnitude of balancing mass 

required at 10 cm radius in planes L and M midway between A and B, and B and C. 

 

Solution: 

 

Case (i): 

 

 
Plane 

1 

 

Mass 

(m) kg 

2 

 

Radius (r) 

m 
3 

Centrifugal force/ω2
 

(m r) 

kg-m 

4 

Distance 

from Ref. 

plane „A‟ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

A 

(R.P.) 
50 0.025 mA rA = 1.25 0 0   00

 

A 

B 40 0.025 mB rB = 1.00 0.6 0.6  900
 

B 

C 60 0.025 mC rC = 1.50 1.2 1.8   2100
 

C 

Analytical Method Step 

1: 

Determination of unbalanced couple 

Resolve the couples into their horizontal and vertical components and find their sums. Sum of the horizontal 

components gives, 

∑mrl cos θ  0.6 cos 90 0  1.8 cos 2100  1.559      ( 1) 

r 



 

  

 

 

Sum of the vertical components gives, 

 

∑m rl sinθ 0.6 sin 90 0 
 1.8 sin 2100 

0.3      (2 ) 



 

  

 

 

unbalanced 

 

 

Squaring and adding (1) and (2), we get 
 

C
unba lanced    -1.5592  

 - 0.32 

 1.588 kg  m2
 

 

Step 2: 

Determination of unbalanced force 

 
Resolve the forces into their horizontal and vertical components and find their sums. Sum of the horizontal 

components gives, 

∑mr cosθ  1.25 cos 0 0 1.0 cos 900 1.5 cos 2100
 

1.25 0 (1.299)  0.049         ( 3) 

 
Sum of the vertical components gives, 

 

∑mr sin θ  1.25 sin 0 0  1.0 sin 90 0 1.5 sin 210 0 

0 1.0 (0.75)  0.25         (4) 

 
Squaring and adding (3) and (4), we get 

 

F    - 0.049 2  
 0.252 

 0.2548 kg  m 

 

Graphical solution: 

 

 



 

  

 

 

c’ 

b’ 

o’ 

1.8 0.6 

Unbalanced couple 

Couple polygon 

o’ 

b’ 

0.6 

o’ 

o’ 

c’ Unbalanced couple 

1.8 

 

` b 

 

 

 

 
Unbalanced force 

 

o 

 

 

 

1.25 

 

Force polygon 

1.00 

 

 
 

a 

 

 

Case (ii): 

 

 

 

 

 

 
To determine the magnitude and directions of masses mM and mL. 

 
Let, mL be the balancing mass placed in plane L and mM be the balancing mass placed in plane M which are to 

be determined. 

 
The data may be tabulated as shown. 

Couple polygon 

c 
1.50 



 

  

 

 

M M 

 

 
Plane 

1 

 

Mass 

(m) kg 

2 

 

Radius (r) 

m 
3 

Centrifugal 

force/ω2 

(m r) 

kg-m 
4 

Distance 

from Ref. 

plane ‘L’ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

A 50 0.025 mA rA = 1.25 -0.3 -0.375   00
 

A 

L 
(R.P.) 

mL = ? 0.10 0.1 mL 0 0 L ? 

B 40 0.025 mB rB = 1.00 0.3 0.3  900
 

B 

M mM = ? 0.10 0.1 mM 0.6 0.06 mM M ? 

C 60 0.025 mC rC = 1.50 0.9 1.35   2100
 

C 

 
 

Analytical Method: 

 

Step 1: 

Resolve the couples into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

∑m r l cos θ    m M r Ml M cos θ M    0 

On substitution w e get 

- 0.375 cos 0 0  0.3 cos 90 0  0.06 m cos θ 1.35 cos 210 0  0 

M M 

i.e. - 0.375  0  0.06 m M cos θ M (1.16913)  0 

0.06 m M cos θ M 1.54413 

m cos θ  
1.54413 

25.74     (1)  

M M 
0.06 

 
Sum of the vertical components gives, 

 

∑m r l sin θ  m M r Ml M sin θ M  0 

On substitution w e get 

- 0.375 sin 0 0  0.3 sin 90 0  0.06 m sin θ 1.35 sin 210 0  0 

i.e. 0  0.3  0.06 mM sin θM ( 0.675)  0 

0.06 mM sin θ M  0.375 

m sin θ  
0.375 

 6.25     ( 2) 

M M 
0.06 



 

  

 

 

Squaring and adding (1) and (2), we get 



 

  

 

 

M M 

M M 

M 

L L 

L L 

 

(m cos θ ) 2
  (m sin θ ) 2  ( 25.74) 2 

( 6.25 ) 2  701.61 

 

i.e. m 2  701.61 and m M  26.5 kg Ans 

 

Dividing (2) by (1), we get 

 
tanθ 

 6.25  

 

 
and θ 13.650 Ans 

M 
25.74 

M
 

 
 

Step 2: 
Resolve the forces into their horizontal and vertical components and find their sums. Sum of the horizontal 

components gives, 

∑mr cos θ  m L r L  cos θ L   m M rM   cos θ M   0 

On substitution w e get 

1.25 cos 0 0  0.1m cos θ 1.0 cos 90 0 2.649 cos 13.65 0  1.5 cos 210 0  0 

1.25  0.1mL cos θ L  0 2.5741 (1.299) 0 

Therefore 

0.1m L  cos θ L   2.5251  0 

and m cos θ  
 2.5251 

 25.251         (3)  

L L 0.1 

 
Sum of the vertical components gives, 

∑m r sin θ  m L  rL   sin θ L   m M rM   sin θ M    0 

On substitution w e get 

1.25 sin 0 0  0.1m sin θ 1.0 sin 90 0 2.649 sin13.65 0  1.5 sin 210 0  0 

0 0.1 mL  sin θ L   1 0.6251 (0.75)  0 

Therefore 

0.1 m sin θ  0.8751  0 

L L 

and m sin θ  
 0.8751 

  8.751         (4)  

L L 
0.1

 



 

  

 

 

L L L L 

L 

Squaring and adding (3) and (4), we get 

(m cos θ ) 2 (m sin θ ) 2
  (-25.251) 2 (-8.751) 2  714.193 

i.e. m 2  714.193 and m L  26.72 kg Ans 

Dividing (4) by (3), we get 



 

  

 

 

L 

 

 
tan θ 


  8.751 

L 
- 25.251 

 
and θ 19.110

 

Ans 

The balancing mass mL is at an angle 19.11
0 

+ 180
0 

= 199.11
0 

measured in counter clockwise direction. 

 

Graphical Method: 

 

 
 

0.3 

1.35 0.375 

0.06 mM 

COUPLE POLYGON 

0.1 mM 

1.5 

  1.0  

0.1 mL 

1.25 

FORCE POLYGON 



 

  

 

 

B 

 

Problem 8: 

 

Four masses A, B, C and D are completely balanced. Masses C and D make angles of 90
0 

and 210
0 

respectively 

with B in the same sense. The planes containing B and C are 300 mm apart. Masses A, B, C and D can be 
assumed to be concentrated at radii of 360 mm, 480 mm, 240 mm and 300 mm respectively. The masses B, C and 

D are 15 kg, 25 kg and 20 kg respectively. Determine i) mass A and its angular position ii) position of planes A 
and D. 

 

Solution: Analytical Method 

 

Step 1: 

Draw the space diagram or angular position of the masses. Since the angular position of the masses C and D are 

given with respect to mass B, take the angular position of mass B as  00 
. 

 
Tabulate the given data as shown. 

 

 
Plane 

1 

 

Mass 

(m) kg 

2 

 

Radius (r) 

m 
3 

Centrifugal force/ω2
 

(m r) 

kg-m 

4 

Distance 

from Ref. 

plane „A‟ 

m 
5 

Couple/ ω2
 

(m r L) 

kg-m2 

6 

Angle 



7 

A 
(R.P.) 

mA= ? 0.36 mA rA = 0.36 mA 0 0 A ? 

B 15 0.48 mB rB = 7.2 lB = ? 7.2 lB B 0 

C 25 0.24 mC rC = 6.0 lC = ? 6.0 lC  900
 

C 

D 20 0.30 mD rD = 6.0 lD = ? 6.0 lD   2100
 

D 

 

 

 
 



 

  

 

 

A A 

A 

 

 

Step 2: 

Mass mA be the balancing mass placed in plane A which is to be determined along with its angular position. 

 
Refer column 4 of the table. Since mA is to be determined ( which is the only unknown) 

,resolve the forces into their horizontal and vertical components and find their sums. 

 
Sum of the horizontal components gives, 

∑ mr cos θ  m 
A  

r
A   

cos θ 
A  
 m 

B 
r

B   
cos θ 

B 
 m 

C 
r 

C  
cos θ 

C 
 m 

D
r 

D  
cos θ 

D 
 0 On 

substitution we get 

0.36 m   cos θ    7.2 cos 00    6.0 cos 900    6.0 cos 2100    0 

A A 

Therefore 

0.36 m  cos θ  - 2.004          (1) 

A A 

 

Sum of the vertical components gives, 

∑mr sin θ  m 
A 
r 

A 
sin θ 

A  
 m 

B 
r 

B  
sin θ 

B 
m 

C
r 

C 
sin θ 

C
 m 

D
r 

D 
sin θ 

On substitution w e get 

0.36 m sin θ  7.2 sin 0 0  6.0 sin 90 0  6.0 sin210 0  0 

Therefore 

0.36 m A sin θ A - 3.0         ( 2 ) 

 
Squaring and adding (1) and (2), we get 

 

0.362 (m )2 (  2.004)2 (3.0)2  13.016 

 

D
 0 

m A 
13.016 

0.362
 

 
 10.02 kg Ans 

 

Dividing (2) by (1), we get 

 

tan θ   3.0  

 

 
and Resutltant makes an angle  56.26 0

 

A 
- 2.004 

The balancing mass A makes an angle of θ A 236.26 0 Ans 



 

  

 

 

 

Step 3: 

 
Resolve the couples into their horizontal and vertical components and find their sums. Sum of the horizontal 

components gives, 

∑ mr l cos θ  m 
A  
r

A 
l 

A 
cos θ 

A  
 m 

B 
r

B 
l 

B 
cos θ 

B 
 m 

C 
r 

C 
l 

C
cos θ 

C 
 m 

D
r 

D
l 

D
cos θ 

D 
 0 

On substitution we get 

0  7.2 l   cos 00   6.0 l   cos 900    6.0 l   cos 2100    0 

B C D 

7.2 lB   5.1962lD    0  ------------------ (3) 

 
Sum of the vertical components gives, 

∑ mr l sin θ  m 
A  

r
A  
l 

A 
sin θ 

A  
 m 

B 
r

B 
l 

B 
sin θ 

B 
 m 

C 
r

C 
l 

C 
sin θ 

C 
 m 

D 
r 

D 
l 

D 
sin θ 

D  
 0 On 

substitution we get 

0  7.2 l  sin 00   6.0 l   sin 900    6.0 l   sin 2100    0 

B C D 

0  0  6.0 l C   3 lD   0  ------------------ (4) 

 

 

But from figure we have,  l C    l B   0.3 

On substituting this in equation (4), we get 

6.0 ( l B   0.3)  3 l D   0 

i.e. 6.0 l B   3 l D   1.8  ----------------- (5) 

 
Thus we have two equations ( 3) and (5), and two unknownsl B , l D 

7.2 l B   5.1962 l D   0  ------------------- (3) 

6.0 l B   3 l D 

On solving the equations, we get 

l D    1.353 m and  l B    0.976 m 

 1.8 - - - - - - - - - -(5) 

 



 

  

 

 

As per the position of planes of masses assumed the distances shown are positive (+ ve ) from the reference plane 

A. But the calculated values of distances lB and lD are negative. The corrected positions of planes of masses is 

shown below. 



 

  

 

 

 

 
 

 

 

 

 

 
 

 
 



 

  

 

 

      



 

  

 

 

 

 

 

 
 



 

  

 

 

 

 

 

 
 

 



 

  

 

 

 

 

 

 



 

  

 

 



 

  

 

 



 

   

 

 

BALANCING OF RECRIPROCATING MASSES 

SLIDER CRANK MECHANISM: 

 

PRIMARY AND SEC ONDARY ACCELERATING FORCE: 

 
 

Acceleration of the reciprocating mass of a slider-crank mechanism is given by, 

 

ap   Acceleration of piston 

 r 2 cos 
cos2  

         (1) 



Where n  
l
 

r 

n 



And, the force required to accelerate the mass ‘m’ is 

 

F mr 2 cos 
cos2



i 

 n 




mr 2 cos  mr 2 cos2 
         (2) 

n 



 

   

 

 

The first term of the equation (2) , i.e. 

mr 2 cos
is called primary accelerating 

force the second term mr 2 cos 

2


n 

 

is called the secondary accelerating force. 

 

Maximum value of primary accelerating force is  mr
2

 

And Maximum value of secondary accelerating force is 

 
mr 2 

n 

Generally, ‘n’ value is much greater than one; the secondary force is small compared to primary force and can be 

safely neglected for slow speed engines. 

 
 

 
In Fig (a), the inertia force due to primary accelerating force is shown. 

 
 



 
 

 

 

2
1 

21 

41 21 

In Fig (b), the forces acting on the engine frame due to inertia force are shown. 

 
At ‘O’ the force exerted by the crankshaft on the main bearings has two components, 

horizontal  F
h     

and vertical F
v  

. 

 

h 

21 is an horizontal force, which is an unbalanced shaking force. 

 
v   

and  F
v

 
balance each other but form an unbalanced shaking couple. 

 

The magnitude and direction of these unbalanced force and couple go on changing with angle θ. The shaking 

force produces linear vibrations of the frame in horizontal direction, whereas the shaking couple produces an 
oscillating vibration. 

The shaking force h 

21 is the only unbalanced force which may hamper the smooth 

running of the engine and effort is made to balance the same. 

However it is not at all possible to balance it completely and only some modifications can be carried out. 

 

BALANCING OF THE SHAKING FORCE: 

 
Shaking force is being balanced by adding a rotating counter mass at radius ‘r’ directly opposite the crank. This 
provides only a partial balance. This counter mass is in addition to the mass used to balance the rotating 

unbalance due to the mass at the crank pin. This is shown in figure (c). 

 
 

F 

F 

F 



 

   

 

 

 

 

The  horizontal  component  of  the  centrifugal  force  due  to  the  balancing  mass  is 

mr 
2  
cos and this is in the line of stroke. This component neutralizes the  unbalanced 

reciprocating force. But the rotating mass also has a component 
mr 2 sin

perpendicular to the line of stroke which remains unbalanced. The unbalanced force is zero at θ = 00 or 1800 and 
maximum at the middle of the stroke i.e. θ = 900. The magnitude or the maximum value of the unbalanced force 

remains the same i.e. equal to 

mr2
 

. Thus instead of sliding to and fro on its mounting, the mechanism tends to 

jump up and down. 

2 

To minimize the effect of the unbalance force a compromise is, usually made, is 

3 

 
 
of the 

1 
reciprocating mass is balanced or a value between 

2 

3 

to . 

4 
 

If ‘c’ is the fraction of the reciprocating mass, then 
 

The 
primary force balanced by the mass  cmrω2 cosθ 

 

and 

 

The primary force unbalancedby the mass  (1c) mrω2   cos θ 

 

Vertical component of centrifuga l force which remains unbalanced 

 c mr ω2 sin θ 

 

In reciprocating engines, unbalance forces in the direction of the line of stroke are more dangerous than the 
forces perpendicular to the line of stroke. 

 
 

Resultant unbalanced force at any instant 

   (1  c)mr ω2 cos θ2  

 cmr ω2 sin θ2 

 
 

The resultant unbalanced force is minimum when, c  
1

 

2 
 

This method is just equivalent to as if a revolving mass at the crankpin is completely balanced by providing a 
counter mass at the same radius diametrically opposite to the 



 

   

 

 

crank. Thus if m P is the mass at the crankpin and ‘c’ is the fraction of the reciprocating 

mass ‘m’ to be balanced , the mass at the crankpin may be considered as which is to be completely 

balanced. 
cm  m P 



 

   

 

 

c 

 

 

Problem 1: 

A single –cylinder reciprocating engine has a reciprocating mass of 60 kg. The crank rotates at 60 rpm and the 
stroke is 320 mm. The mass of the revolving parts at 160 mm radius is 40 kg. If two-thirds of the reciprocating 

parts and the whole of the revolving parts are to be balanced, determine the, (i) balance mass required at a radius 
of 350 mm and (ii) unbalanced force when the crank has turned 500 from the top-dead centre. 

 

Solution: 

Given: 
 
m  mass of the reciprocating 

 
parts  60 kg 

N 60 rpm, L  lengthofthestroke  320 mm 

m  40 kg, c  
2 

, r 
 

350 mm 
P 3 c 

 

(i) Balance mass required at a radius of 350 mm 
 

ω  
2πN 

 
2πx60 

 2π rad/s 

  

We have, 

r 

60 60 

L 320 

 

 
2 
   

2 
 160 mm 

 

Mass to be balanced at the crank pin  M 

M  c m  mP  
2 

x60  40  80 kg 

3 

 

 
and 

mc rc 

 

 Mr 
 

therefore 
m  

Mr 

rc 

i.e. mc  
80 x160 

 36.57 kg 

350 

 

(ii) Unbalanced force when the crank has turned 500 from the top-dead centre. 
 

Unbalanced force at θ500
 

   1  cmrω2 cosθ2 

cmr ω2 sinθ2 

 2 
1  

3 
 x60x0.16x 2π 

 
 2 cos50   3 

x60x0.16x 2π 0 
2 

2 0 
2 

 
 2 sin50 





 

   

 

 





 209.9 N 



 

   

 

 

c 

 

 

Problem 2: 

The following data relate to a single cylinder reciprocating engine: Mass of 
reciprocating parts = 40 kg 

Mass of revolving parts = 30 kg at crank radius Speed = 
150 rpm, Stroke = 350 mm. 

If 60 % of the reciprocating parts and all the revolving parts are to be balanced, determine the, 
(i) balance mass required at a radius of 320 mm and (ii) unbalanced force when the crank has turned 450 from the 

top-dead centre. 
 

Solution: 

 

Given : 

 
 

m  mass 

 
 

of the 

 
 

reciprocat ing 

 
 

parts  40 kg 

mP   30 kg , N 150 rpm, L  length of the stroke  350 mm 

c  60 % , rc   320 mm 

 
 

(i) Balance mass required at a radius of 350 mm 
 

ω  
2πN 

 
2πx150 

 15.7 rad/s 

  

We have, 60 60 

r  
L
 

2 

 
350 

 175 mm 

2 

Mass to be balanced at the crank pin  M 

M  c m  mP    0.60 x 40  30  54 kg 

and mc rc 

 Mr therefore m  
Mr 

rc 

i.e. mc  
54 x175 

29.53 kg 
320 

(ii) Unbalanced force when the crank has turned 450 from the top-dead centre. 

Unbalanced force at θ  45
0

 

   1  cmrω2 cos θ2  

 cmr ω2 sin θ2 

   1  0.60  x 40 x 0.175 x 15.7 2 
cos 45 0 2  

 0.60 x 40 x 0.175 x15.7 2 
sin 450 2 



 

   

 

 

 880.7 N 



 

   

 

 

 

 
SECONDARY BALANCING: 

 

Secondary acceleration force is equal to mr 2 cos2 
     (1) 

n 

Its frequency is twice that of the primary force and the magnitude magnitude of the primary 

force. 

The secondary force is also equal to mr(2)2 cos2 
     (2) 

4n 

 

 

 

 

 
times the 

 

Consider, two cranks of an engine, one actual one and the other imaginary with the following specifications. 

 

 Actual Imaginary 

Angular velocity  2

Length of crank r 
r 

 

4n 
Mass at the crank pin m m 

 

 
 

Thus, when the actual crank has turned through an angle would have 

turned an angle 2  2 t    t 
, the imaginary crank 

1 
n 



 

   

 

 

 

 
Centrifugal force induced in the imaginary crank = mr2ω2 

4n 

mr2ω2 

Component of this force along the line of stroke is = 
4n 

cos2θ 

r 

Thus the effect of the secondary force is equivalent to an imaginary crank of length 

4n 

rotating at double the angular velocity, i.e. twice of the engine speed. The imaginary crank coincides with the 
actual at inner top-dead centre. At other times, it makes an angle with the line of stroke equal to twice that of the 

engine crank. 
The secondary couple about a reference plane is given by the multiplication of the secondary force with the 

distance ‘ l ’ of the plane from the reference plane. 

 
 

COMPLETE BALANCING OF RECIPROCATING PARTS 

 
Conditions to be fulfilled: 

1. Primary forces must balance i.e., primary force polygon is enclosed. 

2. Primary couples must balance i.e., primary couple polygon is enclosed. 

3. Secondary forces must balance i.e., secondary force polygon is enclosed. 

4. Secondary couples must balance i.e., secondary couple polygon is enclosed. 
Usually, it is not possible to satisfy all the above conditions fully for multi-cylinder 

engine. Mostly some unbalanced force or couple would exist in the reciprocating engines. 

 

BALANCING OF INLINE ENGINES: 

 
An in-line engine is one wherein all the cylinders are arranged in a single line, one behind the other. Many of the 

passenger cars such as Maruti 800, Zen, Santro, Honda-city, Honda CR-V, Toyota corolla are the examples 
having four cinder in-line engines. 

 
 

In a reciprocating engine, the reciprocating mass is transferred to the crankpin; the axial component of the 

resulting centrifugal force parallel to the axis of the cylinder is the primary unbalanced force. 
 

Consider a shaft consisting of three equal cranks asymmetrically spaced. The crankpins carry equivalent of three 
unequal reciprocating masses, then 



 

   

 

 



 

 

 

 

 
 

Primary 

 
Primary 

force   mrω2 cosθ             (1) 

couple   mrω2  l cosθ             (2) 

2ω2 

Secondary force   m r 
4n 

cos 2θ              (3) 

2ω2 

And Secondary couple   m r 
4n

 l cos 2θ 

 m r 
ω2 

n 
l cos 2θ              (4) 

 

GRAPHICAL SOLUTION: 

 

To solve the above equations graphically, first draw the  m r cos θ 

 

polygon ( 
2 

is 

common to all forces). Then the axial component of the resultant forces (Fr cos  ) 

multiplied by 
2 

provides the primary unbalanced force on the system at that moment. This unbalanced force is 



 

   

 

 

zero when  90
0 

and a maximum when  0
0 

. 



 

   

 

 

If the force polygon encloses, the resultant as well as the axial component will always be zero and the system will 

be in primary balance. 
Then, 

 

 FP h 0 and  FP V 0 

 

To find the secondary unbalance force, first find the positions of the imaginary secondary 

cranks. Then transfer the reciprocating masses and multiply the same by to get the secondary 

force. 

22 


2
 

or 

4n n 

In the same way primary and secondary couple ( m r l ) polygon can be drawn for primary and secondary 
couples. 

 

Case 1: 

IN-LINE TWO-CYLINDER ENGINE 

 

Two-cylinder engine, cranks are 1800 apart and have equal reciprocating masses. 

 



 

   

 

 

2 2  

 

 
 

 
 

Taking a plane through the centre line as the reference plane, 

 

 

Primary 

 
force 

 m rω2 cosθ cos(180 θ)  0 

 Primary couple   m rω2   l cos θ 

  

l 
cos(180  θ)

 
 m rω2 l cos θ 

 
 

   



Maximum values are mrω2 l  at θ00  and1800
 

 

 

Secondary 

 

force 
 

m rω2 

cos 2θ  cos(360 
n 

 2θ)  
2m rω2 

cos 2θ 
n 

 

Maximum values are 2m rω2     

when 2 θ  00  , 180 0  , 360 0  and 540 0 

 

n or θ  00  , 90 0 ,180 0   and 270 0 



 

   

 

 

2 2 

2 2 

2 2 



 

 

 Secondary  couple 
 

m rω2  l 
cos 2θ 


  

l 
cos(360 


  

 
 0 

 

n   

2θ)






ANALYTICAL METHOD OF FINDING PRIMARY FORCES AND COUPLES 

 

 First the positions of the cranks have to be taken in terms of θ 0
 

 The maximum values of these forces and couples vary instant to instant and are 

equal to the values as given by the equivalent rotating masses at the crank pin. 

 
If a particular position of the crank shaft is considered, the above expressions may not give the maximum 

values. 
For example, the maximum value of primary couple is mrω2 l and this value is 

obtained at crank positions 00 and 1800. However, if the crank positions are assumed at 900 and 2700, the 
values obtained will be zero. 

 

 If any particular position of the crank shaft is considered, then both X and Y 

components of the force and couple can be taken to find the maximum values. 

 
For example, if the crank positions considered as 1200 and 3000, the primary couple can be obtained as 

 

X  component  mr ω2  l cos 120 0  

 

l  
cos 180 0   120 0 

 

   

  
1 

mr ω2 l 
2 

 

 Y  component 
 mr ω2   l sin 120 0   

 

  

l  
sin 180 0  

 120 0  


 

   

  
3 

mr ω2 l 
2 

 
 

Therefore, Primary couple 

 mrω2 l 

 

 

3 
 mrω2 l

1 
2 

 2 
 


 2 
mrω2 l




2 



 

   

 

 

 

Case 2: 

IN-LINE FOUR-CYLINDER FOUR-STROKE ENGINE 



 
 

 

DYNAMICS OF MACHINES 13 VIJAYAVITHAL BONGALE 

This engine has tow outer as well as inner cranks (throws) in line. The inner throws are at 

1800 to the outer throws. Thus the angular positions for the cranks are θ 0  for the first, 

1800  θ 0 for the second, 1800  θ 0 for the third and θ 0 for the fourth. 

 

 

 
 



 

   

 

 

2 2 

 


  

 

 

 
 

 

 

FINDING PRIMARY FORCES, PRIMARY COUPLES, SECONDARY FORCES AND SECONDARY 

COUPLES: 

 
Choose a plane passing through the middle bearing about which the arrangement is symmetrical as the reference 

plane. 

 

Primary 

 
force 

 m rω2 cos θ  cos(180 0 
 θ)  cos(180 0 

 θ)  cos θ

 0 

 

3l
cosθ   

l 
cos(1800 

 θ) 



Primary couple   2 2 

m r ω2  

 

 

l 
cos(1800 

 θ)  

 

3l
cosθ




             

  

 0 

 

m r ω2 cos 2θ  cos(3600 
 2θ) 

Secondary force 
n 


 cos(3600 

 2θ)  cos 2θ



 
4m rω2 

cos2θ 

n 
 

 

Maximum value 
m r ω2 

n 

at 2θ  00 ,1800 ,3600 and 5400 or 

θ  00 ,900 ,1800 and 2700
 

 

 

3l 
cos 2θ  

l 
cos(3600  

2θ) 



m rω2  2 2 





 

   

 

 

Secondary couple  n 
   
 l 

 3l 
  0 


   cos(3600  2θ)   cos 2θ


             
 2   2  




Thus the engine is not balanced in secondary forces. 



 

   

 

 

Problem 1: 

 
A four-cylinder oil engine is in complete primary balance. The arrangement of the reciprocating masses in 

different planes is as shown in figure. The stroke of each piston is 2 r mm. Determine the reciprocating mass of 
the cylinder 2 and the relative crank position. 

 

 

Solution:  
 

Given : 

m1 380 kg, m2  ? , m3  590 kg, m4 

 

 

 480 kg 

crank length L 2r 

  r 
  

2 2 

 

 
Plane 

 
Mass (m) 

kg 

 
Radius (r) 

m 

Cent. 

Force/ω2 

(m r ) 
kg m 

Distance 

from Ref 

plane ‘2’ 

m 

Couple/ ω2 

( m r l ) 

kg m2 

1 380 r 380 r -1.3 -494 r 

2(RP) m2 r m2 r 0 0 

3 590 r 590 r 2.8 1652 r 

4 480 r 480 r 4.1 1968 r 



 

   

 

 

3 

1 

1 

4 4 

4 4 4 

4 

1 

Analytical Method: 

 

Choose plane 2 as the reference plane and  0
0 

. 

. 

Step 1: 
Resolve the couples into their horizontal and vertical components and take their sums. Sum of the horizontal 

components gives 

 494 r cos   1652 rcos 00
  1968 rcos 4  0 

i.

e.

, 

 494 cos 1  1652  1968 cos 4          (1) 

 

Sum of the vertical components gives 

 

 494 r sin   1652 rsin 00
 

 
 1968 rsin 4  0 

i.

e.

, 

494 sin 1 
1968 sin 4          (2) 

 

Squaring and adding (1) and (2), we get 
 

4942 

i.e., 

 1652  1968 cos θ  2  
 1968 sin θ  2 

4942  
 16522  2 x1652x1968cos θ  1968 cos θ  2  

 1968 sin θ  2 

On solving weget, 

cos θ4  0.978 and θ4 167.90
 or 192.10

 

 

Choosing one value, say θ 167.90
 

 

Dividing (2) by (1), we get 
 

tanθ1  
1968 sin(167.90 ) 

1652  1968 cos (167.90 ) 

 
412.53 

 1.515 

 272.28 

i.e., θ   123.40
 

 

Step 2: 



 

   

 

 

2 2 

 
Resolve the forces into their horizontal and vertical components and take their sums. Sum of the horizontal 

components gives 

380 r cos(123.40 )  m r cos   590 rcos 00  480 rcos(167.90 )  0 

or m2 cos 2  88.5             (3) 



 

   

 

 

2 2 

 

Sum of the vertical components gives 
 

380 r sin(123.40 )  m r sin   590 rsin 00  480 rsin(167.90 )  0 

or m2 sin 2   417.9              (4) 

 

Squaring and adding (3) and (4), we get 
 

m2  427.1 kg Ans 

 

 
Dividing (4) by (3), we get tanθ2   

 417.9 

88.5 

  4.72 

or θ2  282 0 Ans 

 

 
 

 
 

Graphical Method: 

 
Step 1: Draw the couple diagram taking a suitable scale as shown. 



 

   

 

 

4 1 2 

 

 

 

 

 
 
 

 

 
This diagram provides the relative direction of the masses m1 ,m3 and m4 . 

 

Step 2: Now, draw the force polygon taking a suitable scale as shown. 
 

This gives the direction and magnitude of mass m2. 
 

The results are:  

 1680 ,  12RATIONS30 ,   28



 

  

 

 

               UNIT 5  

MECHANICAL VIBRATIONS 

A mass m is suspended at the end of a spring, its weight stretches the spring by a length L to reach a static state 

(the equilibrium position of the system). Let u(t) denote the displacement, as a function of time, of the mass 
relative to its equilibrium position. Recall that the textbook’s convention is that downward is positive. Therefore, 

u > 0 means the spring is stretched beyond its equilibrium length, while u < 0 means that the spring is 
compressed. The mass is then assumed to be set in motion (by any one of several means). 

 

 

 

 

 

 

 
 



 

  

 

 

The equations that govern a mass-spring system 

 

At equilibrium: (by Hooke’s Law) 

 

 

 

While in motion: 

 

 

 

This is a second order linear differential equation with constant coefficients. It usually comes with two initial 

conditions:  u(t0) = u0, and u′(t0) = u′0. 

 
Summary of terms: 

 

u(t) = displacement of the mass relative to its equilibrium position. 

m = mass (m > 0) 

γ = damping constant (γ ≥ 0) 

k = spring (Hooke’s) constant (k > 0) 

g = gravitational constant 

L = elongation of the spring caused by the weight F(t) = Externally 
applied forcing function, if any u(t0) = initial displacement of the mass 

u′(t0) = initial velocity of the mass 

mg = kL 

m u″ + γ u′ + k u = F(t) 



 

  

 

 

k 

m 

k 

m 
0  

 0 

T  
2

Undamped Free Vibration (γ = 0, F(t) = 0) 

 

The simplest mechanical vibration equation occurs when γ = 0, F(t) = 0. 

This is the undamped free vibration. The motion equation is 

 

m u″ + k u = 0. 

 

 
The characteristic equation is mr2 + k = 0. Its solutions are The general solution is then 

r   i . 

 

 
 

 

 
 

Where is called the natural frequency of the system. It is the 

 

frequency at which the system tends to oscillate in the absence of any damping. A motion of this type is called 

simple harmonic motion. It is a perpetual, sinusoidal, motion. 

 
 

Comment: Just like everywhere else in calculus, the angle is measured in radians, and the (angular) frequency is 
given in radians per second. The frequency is not given in hertz (which measures the number of cycles or 

revolutions per second). Instead, their relation is: 2π radians/sec = 1 hertz. 

 

 

The (natural) period of the oscillation is given by (seconds). 

u(t) = C1 cos ω0 t + C2 sin ω0 t. 



 

  

 

 

To get a clearer picture of how this solution behaves, we can simplify it with trig identities and rewrite it as 

 

u(t) = R cos (ω0 t − δ). 

The displacement is oscillating steadily with constant amplitude of oscillation 
 

. 

 
The angle δ is the phase or phase angle of displacement. It measures how much u(t) lags (when δ > 0), or leads 

(when δ < 0) relative to cos(ω0 t), which has a peak at t = 0. The phase angle satisfies the relation 

 

 
 

. 

 

 

More explicitly, it is calculated by: 

 

  tan1 C2
 

C1 

 
, if C1 

 
> 0, 

  tan1  C2
 

C1 

  , if C1 
 

< 0, 

  



2 

 
, if C1 

 
= 0 and C2 

 
> 0, 

   



2 

 
, if C1 

 
= 0 and C2 

 
< 0, 

 

The angle is undefined if C1 = C2 = 0. 

2 1 

2 R  C 
2 
 C 

tan   
C2

 

C1 



 

  

 

 

An example of simple harmonic motion: 

 

 
 

 

 

Graph of u(t) = cos(t) − sin(t) 

Amplitude: R  2 

Phase angle:  δ = −π/4 



 

  

 

 

Damped Free Vibration (γ > 0, F(t) = 0) 

 

When damping is present (as it realistically always is) the motion equation of the unforced mass-spring 
system becomes 

 

m u″ + γ u′ + k u = 0. 

 
Where m, γ, k are all positive constants. The characteristic equation is m r2 + γ r + k = 0. Its solution(s) will be 

either negative real numbers, or complex numbers with negative real parts. The displacement u(t) behaves 
differently depending on the size of γ relative to m and k. There are three possible classes of behaviors based on 

the possible types of root(s) of the characteristic polynomial. 

 
 

Case I. Two distinct (negative) real roots 

 
When γ2 > 4mk, there are two distinct real roots, both are negative. The displacement is in the form 

 

 

 

A mass-spring system with such type displacement function is called overdamped. Note that the system does 

not oscillate; it has no periodic components in the solution. In fact, depending on the initial conditions the 
mass of an overdamped mass-spring system might or might not cross over its equilibrium position. But it 

could cross the equilibrium position at most once. 

. 2 1 
2 r t 1 r t 

u(t)  C e  C e 



 

  

 

 

Figures: Displacement of an Overdamped system 

 

 

 

 
 
 

 

Graph of  u(t) = e−t − e−2t 

 

 

 

 

 
 

 

 

Graph of u(t) = − e−t + 2e−2t 



 

  

 

 

Case II. One repeated (negative) real root 

 
 

When γ2 = 4mk, there is one (repeated) real root. It is negative: r  
2m 

. The displacement is in the form 

 

 

 

A system exhibits this behavior is called critically damped. That is, the damping coefficient γ is just large 
enough to prevent oscillation. As can be seen, this system does not oscillate, either. Just like the overdamped 

case, the mass could cross its equilibrium position at most one time. 

 

 

Comment: The value γ2 = 4mk →     

is called critical damping. It 

is the threshold level below which damping would be too small to prevent the system from oscillating. 

u(t) = C1 e rt + C2 t e rt. 

2 mk 



 

  

 

 

Figures: Displacement of a Critically Damped system 

 

 

 

 

 

 

Graph of u(t) = e−t / 2 + t e− t / 2 

 

 

 

 

 
 

 

 

Graph of u(t) = e−t / 2 − t e− t / 2 



 

  

 

 
 

Case III. Two complex conjugate roots 

 
When γ2 < 4mk, there are two complex conjugate roots, where their common real part, λ, is always negative. The 

displacement is in the form 

 

 

 

A system exhibits this behavior is called underdamped. The name means that the damping is small compares to 

m and k, and as a result vibrations will occur. The system oscillates (note the sinusoidal components in the 
solution). The displacement function can be rewritten as 

 

u(t) = R eλ tcos (µ t − δ). 

The formulas for R and δ are the same as in the previous (undamped free vibration) section. The displacement 
function is oscillating, but the amplitude of oscillation, R e λ t, is decaying exponentially. For all particular 

solutions (except the zero solution that corresponds to the initial conditions u(t0) = 0, u′( t0) = 0), the mass 

crosses its equilibrium position infinitely often. 

 

 

 

 

 

Damped oscillation: u(t) = e−t cos(2t) 

u(t) = C1 e λt cos µ t + C2 e λt sin µ t. 



 

  

 

 
 


q T  

2

The displacement of an underdamped mass-spring system is a quasi-periodic function (that is, it shows periodic-
like motion, but it is not truly periodic because its amplitude is ever decreasing so it does not exactly repeat 

itself). It is oscillating at quasi-frequency, which is µ radians per second. (It’s just the frequency of the sinusoidal 
components of the displacement.) The peak- 

 

to-peak time of the oscillation is the quasi-period: (seconds). 

 
 

 

 

 

In addition to cause the amplitude to gradually decay to zero, damping has another, more subtle, effect on the 

oscillating motion: It immediately decreases the quasi-frequency and, therefore, lengthens the quasi-period 
(compare to the natural frequency and natural period of an undamped system). The larger the damping constant 

γ, the smaller quasi-frequency and the longer the quasi-period become. Eventually, at the critical damping 

threshold, when   , the quasi-frequency vanishes and the 

displacement becomes aperiodic (becoming instead a critically damped system). 

 
 

 
Note that in all 3 cases of damped free vibration, the displacement function tends to zero as t → ∞. This 

behavior makes perfect sense from a conservation of energy point-of-view: while the system is in motion, the 
damping wastes away whatever energy the system has started out with, but there is no forcing function to 

supply the system with additional energy. 
Consequently, eventually the motion comes to a halt. 

4mk 



 

  

 

 
 

Example:  A mass of 1 kg stretches a spring 0.1 m.  The system has a damping constant of γ = 14. At t = 0, the 
mass is pulled down 2 m and released with an upward velocity of 3.5 m/s. Find the displacement function. What 

are the system’s quasi-frequency and quasi-period? 

 
 

m = 1, γ = 14, L = 0.1; 

mg = 9.8 = kL = 0.1 k → 98 = k. 

 

The motion equation is u″ + 14 u′ + 98 u = 0, and 

the initial conditions are u(0) = 2, u′(0) = −3.5. 

 

The roots of characteristic polynomial are r = −7  7i: 

 

u(t) = C1 e −7 t cos 7 t + C2 e −7 t sin 7 t 

Therefore, the quasi-frequency is 7 (rad/sec) and the quasi-period is 

T   
2

q 7 
(seconds). 

Apply the initial condition and we get C1 = 2, and C2 = 3/2. Hence 

u(t) = 2e −7t cos 7 t + 1.5e −7t sin 7 t. 



 

  

 

 
 

k 

m 

C 
2 
 C 

2
 1 2 

1 

Summary: the Effects of Damping on an Unforced Mass-Spring System 

 
Consider a mass-spring system undergoing free vibration (i.e. without a forcing function) described by 

the equation: 
 

m u″ + γ u′ + k u = 0, m > 0, k > 0. 

 

The behavior of the system is determined by the magnitude of the damping coefficient γ relative to m and k. 

 

1. Undamped system (when γ = 0) 

 

Displacement: u(t) = C1 cos ω0 t + C2 sin ω0 t 

 
Oscillation:  Yes, periodic (at natural frequency 0   ) 

 

Notes:  Steady oscillation with constant amplitude R  . 

2. Underdamped system (when 0 < γ2 < 4mk) 

Displacement: u(t) = C1 e λ t cos µ t + C2 e λ t sin µ t 

Oscillation: Yes, quasi-periodic (at quasi-frequency µ) 

Notes: Exponentially-decaying oscillation 

 

3. Critically Damped system (when γ2 = 4mk) 

Displacement: u(t) = C1 e rt + C2 t e rt 

Oscillation: No 

 
4. Overdamped system (when γ2 > 4mk) 

 

Displacement: 

u(t)  C e
r1 t

 
 C2 e

r2 t 

 

Oscillation: No 



 

 

 

Mechanical Vibrations, F(t) = 0 

γ 
 
 

 

 

 

 

 

 

Overdamped 

No Oscillation, 

Displacement: u(t)= C1 e r1 t + C2 e r2 t , 
Mass crosses equilibrium at most once. 

 

 

 
 

 

 

 

 

Critically Damped 
 

No Oscillation  rt rt 

Displacement:   u(t)= C1 e + C2 te 

Mass crosses equilibrium at most once. 

 
 
 
 
 

Underdamped 

System oscillates with amplitude 

decreasing exponentially overtime, 

Displacement: u(t)= C1eλtcos µt + C2 eλtsin µt, 

Oscillation quasi periodic: Tq = 2π/µ 

 

 

 

 

 

γ2 < 4mk 

γ2 = 4mk 
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γ2 > 4mk 
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γ=0 ry

 

Undamped 

γ = 0, Displacement: u(t)= C1 cos ω0t + C2 sin ω0t 

Natural frequency: ω0 = , Steady oscillation with constant 

amplitude 

 
B-3 - 14 



 

  

 

 

Forced Vibrations 

 

Undamped Forced Vibration (γ = 0, F(t) ≠ 0) 

 

Now let us introduce a nonzero forcing function into the mass-spring system. 

To keep things simple, let damping coefficient γ = 0. The motion equation is 
 

m u″ + k u = F(t). 

 

In particular, we are most interested in the cases where F(t) is a periodic function. Without the losses of 
generality, let us assume that the forcing function is some multiple of cosine: 

 

m u″ + k u = F0 cos ωt. 

This is a nonhomogeneous linear equation with the complementary solution 

 

uc(t) = C1 cos ω0 t + C2 sin ω0 t. 

The form of the particular solution that the displacement function will have depends on the value of the forcing 
function’s frequency, ω. 

 
 

Case I. When ω ≠ ω0 

If ω ≠ ω0 then the form of the particular solution corresponding to the forcing function is 

Y = A cos ωt + B sin ωt. 

 
Solving for A and B using the method of Undetermined Coefficients, we find 

 
that Y 

m(

F0 

2 
  2 ) 

cost . 

 

Therefore, the general solution of the displacement function is 

u(t)  C1 cos 0 t  C2 sin  0 t 
m(



F0 

2 
  2 ) 

cos t . 

0 
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0 
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An interesting instance of such a forced vibration occurs when the initial conditions are u(0) = 0, and u′(0) = 0. 
Applying the initial conditions to the general solution and we get 

C   
 F0  

, and C 
 

= 0. 

1 
m( 2 

  2 ) 2 

Thus, 

u(t) 




m(





F0 

2 
  2 ) 

 
cos t  cos t  . 

 

 
 

Again, a clearer picture of the behavior of this solution can be obtained by rewriting it, using the identity: 

sin(A) sin(B) = [cos(A − B) − cos(A + B)] / 2. 

 

The displacement becomes 

 

 

 

The behavior exhibited by this function is that the higher-frequency, of (ω0 + ω) / 2, sine curve sees its 

amplitude of oscillation modified by its lower-frequency, of (ω0 − ω) / 2, counterpart. 

 
This type of behavior, where an oscillating motion’s own amplitude shows periodic variation, is called a beat. 

The quantity ωb = | ω0 – ω | is called the beat frequency. It can be derived by dividing 2π by the distance 
between 

 
adjacent zeros of sin 

( 0   ) t 
.
 

2 

. 

( 0   )t 

2 
 sin 


2 
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( 0   )t 

sin 

2F0 

 m( 2 
  2 ) 


u(t)  
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An example of beat: 

 

 
 

 

Graph of u(t) = 5 sin(1.8t) sin(4.8t) 



 

  

 

 

Case II. When ω = ω0 

If the periodic forcing function has the same frequency as the natural frequency, that is ω = ω0, then the form of 

the particular solution becomes 

 

Y = A t cos ω0 t + B t sin ω0 t. 

Use the method of Undetermined Coefficients we can find that 

 

 
A = 0, and B  

F 0
 

2m 0 

 

The general solution is, therefore, 

 

. 

 

The first two terms in the solution, as seen previously, could be combined to become a cosine term u(t) = R cos 
(ω0 t − δ), of steady oscillation. The third term, however, is a sinusoidal wave whose amplitude increases 

proportionally with elapsed time. This phenomenon is called resonance. 

 

 

 

 

 

Resonance: graph of u(t) = t sin(t) 

0 

0 t sin  t 
F0 

2m



0 2 0 1 u(t)  C cos  t  C sin  t 
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Technically, true resonance only occurs if all of the conditions below are satisfied: 

 

 

 

However, similar behaviors, of unexpectedly large amplitude of oscillation due to a fairly low-strength forcing 

function occur when damping is present but is very small, and/or when the frequency of forcing function is very 
close to the natural frequency of the system. 

1. There is no damping: γ = 0, 

 

2. A periodic forcing function is present, and 

 

3. The frequency of the forcing function exactly matches the natural frequency of the 

mass-spring system. 
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